91 research outputs found

    Targeted Delivery of Neural Stem Cells to the Brain Using MRI-Guided Focused Ultrasound to Disrupt the Blood-Brain Barrier

    Get PDF
    Stem cell therapy is a promising strategy to treat neurodegenerative diseases, traumatic brain injury, and stroke. For stem cells to progress towards clinical use, the risks associated with invasive intracranial surgery used to deliver the cells to the brain, needs to be reduced. Here, we show that MRI-guided focused ultrasound (MRIgFUS) is a novel method for non-invasive delivery of stem cells from the blood to the brain by opening the blood brain barrier (BBB) in specific brain regions. We used MRI guidance to target the ultrasound beam thereby delivering the iron-labeled, green fluorescent protein (GFP)-expressing neural stem cells specifically to the striatum and the hippocampus of the rat brain. Detection of cellular iron using MRI established that the cells crossed the BBB to enter the brain. After sacrifice, 24 hours later, immunohistochemical analysis confirmed the presence of GFP-positive cells in the targeted brain regions. We determined that the neural stem cells expressed common stem cell markers (nestin and polysialic acid) suggesting they survived after transplantation with MRIgFUS. Furthermore, delivered stem cells expressed doublecortin in vivo indicating the stem cells were capable of differentiating into neurons. Together, we demonstrate that transient opening of the BBB with MRIgFUS is sufficient for transplantation of stem cells from the blood to targeted brain structures. These results suggest that MRIgFUS may be an effective alternative to invasive intracranial surgery for stem cell transplantation

    Distinct and Overlapping Effector Functions of Expanded Human CD4+, CD8α+ and CD4-CD8α- Invariant Natural Killer T Cells

    Get PDF
    CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4+, CD8α+ and CD4−CD8α− double-negative (DN) subsets. CD4+ iNKT cells expanded more readily than CD8α+ and DN iNKT cells upon mitogen stimulation. CD8α+ and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d+ cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4+ and CD8α+ fractions, respectively. Only CD4+ iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α+, DN or CD4+ iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease

    A polymorphic microsatellite from the Squalius alburnoides complex (Osteichthyes, Cyprinidae) cloned by serendipity can be useful in genetic analysis of polyploids

    Get PDF
    A new microsatellite locus (SAS1) for Squalius alburnoides was obtained through cloning by serendipity. The possible usefulness of this new species-specific microsatellite in genetic studies of this hybrid-species complex, was explored. The polymorphism exhibited by SAS1 microsatellite is an important addition to the set of microsatellites previously used in genetic studies in S. alburnoides complex, that mostly relied in markers described for other species. Moreover, the SAS1 microsatellite could be used to identify the parental genomes of the complex, complementing other methods recently described for the same purpose.

    A molecular analysis by gene expression profiling reveals Bik/NBK overexpression in sporadic breast tumor samples of Mexican females

    Get PDF
    BACKGROUND: Breast cancer is one of the most frequent causes of death in Mexican women over 35 years of age. At molecular level, changes in many genetic networks have been reported as associated with this neoplasia. To analyze these changes, we determined gene expression profiles of tumors from Mexican women with breast cancer at different stages and compared these with those of normal breast tissue samples. METHODS: (32)P-radiolabeled cDNA was synthesized by reverse transcription of mRNA from fresh sporadic breast tumor biopsies, as well as normal breast tissue. cDNA probes were hybridized to microarrays and expression levels registered using a phosphorimager. Expression levels of some genes were validated by real time RT-PCR and immunohistochemical assays. RESULTS: We identified two subgroups of tumors according to their expression profiles, probably related with cancer progression. Ten genes, unexpressed in normal tissue, were turned on in some tumors. We found consistent high expression of Bik gene in 14/15 tumors with predominant cytoplasmic distribution. CONCLUSION: Recently, the product of the Bik gene has been associated with tumoral reversion in different neoplasic cell lines, and was proposed as therapy to induce apoptosis in cancers, including breast tumors. Even though a relationship among genes, for example those from a particular pathway, can be observed through microarrays, this relationship might not be sufficient to assign a definitive role to Bik in development and progression of the neoplasia. The findings herein reported deserve further investigation

    Association between ultrasound-detected synovitis and knee pain: a population-based case-control study with both cross-sectional and follow-up data

    Get PDF
    Background: Recently an important role for synovial pathology in the initiation and progression of knee osteoarthritis (OA) has been emphasised. This study aimed to examine whether ultrasonographydetected synovial changes (USSCs) associate with knee pain (KP) in a community population. Methods: A case-control study was conducted to compare people with early KP (n=298), established KP (n=100) or no KP (n=94) at baseline. Multinomial logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) between groups adjusted for radiographic osteoarthritis (ROA) severity and other confounding factors. After one year 255 participants with early and established KP completed the followup questionnaire for changes in KP. Logistic regression with adjustment was used to determine predictors of KP worsening. Results: At baseline, effusion was associated with early (OR 2.64, 95%CI 1.57 to 4.45) and established KP (OR 5.07, 95%CI 2.74 to 9.38). Synovial hypertrophy was also associated with early (OR 5.43, 95%CI 2.12 to 13.92) and established KP (OR 13.27, 95%CI 4.97 to 35.43). The association with effusion diminished when adjusted for ROA. Power Doppler signal was uncommon (early KP 3%, established KP 2%, controls 0%). Baseline effusion predicted worsening of knee pain at one year (OR 1.95, 95% CI 1.05 to 3.64). However, after adjusting for ROA, the prediction was insignificant (aORs 0.95, 95%CI 0.44 to 2.02). Conclusion: US effusion and synovial hypertrophy are associated with KP, but only effusion predicts KP worsening. However, the association/prediction are not independent from ROA. Power Doppler signal is uncommon in people with KP. Further study is needed to understand whether synovitis is directly involved in different types of KP

    A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances have lead to the rapid increase in availability of single nucleotide polymorphisms (SNPs) in a range of organisms, and there is a general optimism that SNPs will become the marker of choice for a range of evolutionary applications. Here, comparisons between 300 polymorphic SNPs and 14 short tandem repeats (STRs) were conducted on a data set consisting of approximately 500 Atlantic salmon arranged in 10 samples/populations.</p> <p>Results</p> <p>Global F<sub>ST </sub>ranged from 0.033-0.115 and -0.002-0.316 for the 14 STR and 300 SNP loci respectively. Global F<sub>ST </sub>was similar among 28 linkage groups when averaging data from mapped SNPs. With the exception of selecting a panel of SNPs taking the locus displaying the highest global F<sub>ST </sub>for each of the 28 linkage groups, which inflated estimation of genetic differentiation among the samples, inferred genetic relationships were highly similar between SNP and STR data sets and variants thereof. The best 15 SNPs (30 alleles) gave a similar level of self-assignment to the best 4 STR loci (83 alleles), however, addition of further STR loci did not lead to a notable increase assignment whereas addition of up to 100 SNP loci increased assignment.</p> <p>Conclusion</p> <p>Whilst the optimal combinations of SNPs identified in this study are linked to the samples from which they were selected, this study demonstrates that identification of highly informative SNP loci from larger panels will provide researchers with a powerful approach to delineate genetic relationships at the individual and population levels.</p

    Autoimmune encephalomyelitis in NOD mice is not initially a progressive multiple sclerosis model.

    Get PDF
    OBJECTIVE: Despite progress in treating relapsing multiple sclerosis (MS), effective inhibition of nonrelapsing progressive MS is an urgent, unmet, clinical need. Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE), provide valuable tools to examine the mechanisms contributing to disease and may be important for developing rational therapeutic approaches for treatment of progressive MS. It has been suggested that myelin oligodendrocyte glycoprotein (MOG) peptide residues 35-55 (MOG35-55 )-induced EAE in nonobese diabetic (NOD) mice resembles secondary progressive MS. The objective was to determine whether the published data merits such claims. METHODS: Induction and monitoring of EAE in NOD mice and literature review. RESULTS: It is evident that the NOD mouse model lacks validity as a progressive MS model as the individual course seems to be an asynchronous, relapsing-remitting neurodegenerative disease, characterized by increasingly poor recovery from relapse. The seemingly progressive course seen in group means of clinical score is an artifact of data handling and interpretation. INTERPRETATION: Although MOG35-55 -induced EAE in NOD mice may provide some clues about approaches to block neurodegeneration associated with the inflammatory penumbra as lesions form, it should not be used to justify trials in people with nonactive, progressive MS. This adds further support to the view that drug studies in animals should universally adopt transparent raw data deposition as part of the publication process, such that claims can adequately be interrogated. This transparency is important if animal-based science is to remain a credible part of translational research in MS.Stichting MS ResearchWellcome TrustMedical Research CouncilNational Multiple Sclerosis Society. Grant Number: RG4132A5/

    The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    Get PDF
    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global FST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change

    Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)

    Get PDF
    Versión del editor
    corecore