54 research outputs found

    On-chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultra-high-Q Microresonator

    Full text link
    The ability to detect and size individual nanoparticles with high resolution is crucial to understanding behaviours of single particles and effectively using their strong size-dependent properties to develop innovative products. We report real-time, in-situ detection and sizing of single nanoparticles, down to 30 nm in radius, using mode-splitting in a monolithic ultra-high-Q whispering-gallery-mode (WGM) microtoroid resonator. Particle binding splits a WGM into two spectrally shifted resonance modes, forming a self-referenced detection scheme. This technique provides superior noise suppression and enables extracting accurate size information in a single-shot measurement. Our method requires neither labelling of the particles nor apriori information on their presence in the medium, providing an effective platform to study nanoparticles at single particle resolution.Comment: 23 pages, 8 figure

    CNS Recruitment of CD8+ T Lymphocytes Specific for a Peripheral Virus Infection Triggers Neuropathogenesis during Polymicrobial Challenge

    Get PDF
    Although viruses have been implicated in central nervous system (CNS) diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV) and peripherally restricted lymphocytic choriomeningitis virus (LCMV). While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ∼50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35%) of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack

    Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma

    Get PDF
    BACKGROUND: Osteosarcoma is a very aggressive tumor with a propensity to metastasize and invade surrounding tissue. Identification of the molecular determinants of invasion and metastatic potential may guide the development of a rational strategy for devising specific therapies that target the pathways leading to osteosarcoma. METHODS: In this study, we used pathway-focused low density expression cDNA arrays to screen for candidate genes related to tumor progression. Expression patterns of the selected genes were validated by real time PCR on osteosarcoma patient tumor samples and correlated with clinical and pathological data. RESULTS: THBS3, SPARC and SPP1 were identified as genes differentially expressed in osteosarcoma. In particular, THBS3 was expressed at significantly high levels (p = 0.0001) in biopsies from patients with metastasis at diagnosis, which is a predictor of worse overall survival, event-free survival and relapse free survival at diagnosis. After chemotherapy, patients with tumors over-expressing THBS3 have worse relapse free survival. High SPARC expression was found in 51/55 (96.3%) osteosarcoma samples derived from 43 patients, and correlated with the worst event-free survival (p = 0.03) and relapse free survival (p = 0.07). Overexpression of SPP1 was found in 47 of 53 (89%) osteosarcomas correlating with better overall survival, event-free survival and relapse free survival at diagnosis. CONCLUSION: In this study three genes were identified with pattern of differential gene expression associated with a phenotypic role in metastasis and invasion. Interestingly all encode for proteins involved in extracellular remodeling suggesting potential roles in osteosarcoma progression. This is the first report on the THBS3 gene working as a stimulator of tumor progression. Higher levels of THBS3 maintain the capacity of angiogenesis. High levels of SPARC are not required for tumor progression but are necessary for tumor growth and maintenance. SPP1 is not necessary for tumor progression in osteosarcoma and may be associated with inflammatory response and bone remodeling, functioning as a good biomarker

    Titin-truncating variants affect heart function in disease cohorts and the general population

    Get PDF
    Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ~1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease

    SPARC 2017 retrospect & prospects : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2017 SPARC conference. This year we not only celebrate the work of our PGRs but also the 50th anniversary of Salford as a University, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 130 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to exploit this great opportunity to engage with researchers working in different subject areas to your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers

    Antiangiogenic therapy for breast cancer

    Get PDF
    Angiogenesis is an important component of cancer growth, invasion and metastasis. Therefore, inhibition of angiogenesis is an attractive strategy for treatment of cancer. We describe existing clinical trials of antiangiogenic agents and the challenges facing the clinical development and optimal use of these agents for the treatment of breast cancer. Currently, the most promising approach has been the use of bevacizumab, a humanized monoclonal antibody directed against the most potent pro-angiogenic factor, vascular endothelial growth factor (VEGF). Small molecular inhibitors of VEGF tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    An account of silence in diagnostic radiography : a cultural quilt

    No full text
    Scholarly studies have resulted in literature that lists numerous different types, functions and motives for silence. The intention of this study was to produce an account of the silences that present in general and accident and emergency radiography (X-ray); collectively referred to as projection imaging. Because silence is multi-faceted and often ambiguous, requisite methods of collages and follow-up conversations were used in the study providing the flexibility to explore a fluid concept. Projection imaging staff consisting of assistant practitioners, radiographers and student radiographers were invited to take part in collage workshops that were supplemented by observations in clinical practice. Sixteen participants agreed to observations of their clinical practice. An additional twelve participants volunteered to join in collage workshops. The workshop participants chose images that represented silence in clinical practice and each produced a collage. Each workshop participant then attended an individual follow-up conversation to discuss individual collage. The methods allow the production of a series of collage images conceived to be a metaphorical cultural quilt: representing an account of silence and silent practices. Thematic analysis indicates that silence strategies are used to facilitate the smooth every day running of X-ray departments focused around five themes: emotional labour and social defence; workload; conflict; hierarchy and; dilemma. Silence is used to reflect and enact empathy for patients and colleagues; to facilitate staff and patient wellbeing; also to keep patient waiting times to a minimum. Additionally participants considered that silence reduces the threat of legal action, decreases emotional anxiety, lessens the demands of emotional labour and promote harmonious teamwork. The study has resulted in an increase in knowledge of silence and silencing strategies in relation to a focused area of projection imaging radiography culture. Set against a background of contemporary health care strategy that encourage the voice of staff and patients, this knowledge will be used to inform future service development, possibilities for change and innovation in the culture of practice. The study concludes that silence is both a help and hindrance to services in a clinical setting
    corecore