23 research outputs found

    Limitations for change detection in multiple Gabor targets

    Get PDF
    We investigate the limitations on the ability to detect when a target has changed, using Gabor targets as simple quantifiable stimuli. Using a partial report technique to equalise response variables, we show that the log of the Weber fraction for detecting a spatial frequency change is proportional to the log of the number of targets, with a set-size effect that is greater than that reported for visual search. This is not a simple perceptual limitation, because pre-cueing a single target out of four restores performance to the level found when only one target is present. It is argued that the primary limitation on performance is the division of attention across multiple targets, rather than decay within visual memory. However in a simplified change detection experiment without cueing, where only one target of the set changed, not only was the set size effect still larger, but it was greater at 2000 msec ISI than at 250 msec ISI, indicating a possible memory component. The steepness of the set size effects obtained suggests that even moderate complexity of a stimulus in terms of number of component objects can overload attentional processes, suggesting a possible low-level mechanism for change blindness

    Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease.

    Get PDF
    OBJECTIVES: Visuospatial processing deficits have been reported in Huntington's disease (HD). To date, no study has examined associations between visuospatial cognition and posterior brain findings in HD. METHODS: We compared 119 premanifest (55> and 64<10.8 years to expected disease onset) and 104 early symptomatic (59 stage-1 and 45 stage-2) gene carriers, with 110 controls on visual search and mental rotation performance at baseline and 12 months. In the disease groups, we also examined associations between task performance and disease severity, functional capacity and structural brain measures. RESULTS: Cross-sectionally, there were strong differences between all disease groups and controls on visual search, and between diagnosed groups and controls on mental rotation accuracy. Only the premanifest participants close to onset took longer than controls to respond correctly to mental rotation. Visual search negatively correlated with disease burden and motor symptoms in diagnosed individuals, and positively correlated with functional capacity. Mental rotation ("same") was negatively correlated with motor symptoms in stage-2 individuals, and positively correlated with functional capacity. Visual search and mental rotation were associated with parieto-occipital (pre-/cuneus, calcarine, lingual) and temporal (posterior fusiform) volume and cortical thickness. Longitudinally, visual search deteriorated over 12 months in stage-2 individuals, with no evidence of declines in mental rotation. CONCLUSIONS: Our findings provide evidence linking early visuospatial deficits to functioning and posterior cortical dysfunction in HD. The findings are important since large research efforts have focused on fronto-striatal mediated cognitive changes, with little attention given to aspects of cognition outside of these areas. (JINS, 2016, 22, 595-608)

    Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington's disease

    Get PDF
    BACKGROUND: Deterioration of cognitive functioning is a debilitating symptom in many neurodegenerative diseases, such as Huntington's disease (HD). To date, there are no effective treatments for the cognitive problems associated with HD. Cognitive assessment outcomes will have a central role in the efforts to develop treatments to delay onset or slow the progression of the disease. The TRACK-HD study was designed to build a rational basis for the selection of cognitive outcomes for HD clinical trials. METHODS: There were a total of 349 participants, including controls (n=116), premanifest HD (n=117) and early HD (n=116). A standardised cognitive assessment battery (including nine cognitive tests comprising 12 outcome measures) was administered at baseline, and at 12 and 24 months, and consisted of a combination of paper and pencil and computerised tasks selected to be sensitive to cortical-striatal damage or HD. Each cognitive outcome was analysed separately using a generalised least squares regression model. Results are expressed as effect sizes to permit comparisons between tasks. RESULTS: 10 of the 12 cognitive outcomes showed evidence of deterioration in the early HD group, relative to controls, over 24 months, with greatest sensitivity in Symbol Digit, Circle Tracing direct and indirect, and Stroop word reading. In contrast, there was very little evidence of deterioration in the premanifest HD group relative to controls. CONCLUSIONS: The findings describe tests that are sensitive to longitudinal cognitive change in HD and elucidate important considerations for selecting cognitive outcomes for clinical trials of compounds aimed at ameliorating cognitive decline in HD

    Clinical impairment in premanifest and early Huntington's disease is associated with regionally specific atrophy.

    No full text
    TRACK-HD is a multicentre longitudinal observational study investigating the use of clinical assessments and 3-Tesla magnetic resonance imaging as potential biomarkers for future therapeutic trials in Huntington's disease (HD). The cross-sectional data from this large well-characterized dataset provide the opportunity to improve our knowledge of how the underlying neuropathology of HD may contribute to the clinical manifestations of the disease across the spectrum of premanifest (PreHD) and early HD. Two hundred and thirty nine gene-positive subjects (120 PreHD and 119 early HD) from the TRACK-HD study were included. Using voxel-based morphometry (VBM), grey and white matter volumes were correlated with performance in four domains: quantitative motor (tongue force, metronome tapping, and gait); oculomotor [anti-saccade error rate (ASE)]; cognition (negative emotion recognition, spot the change and the University of Pennsylvania smell identification test) and neuropsychiatric measures (apathy, affect and irritability). After adjusting for estimated disease severity, regionally specific associations between structural loss and task performance were found (familywise error corrected, P < 0.05); impairment in tongue force, metronome tapping and ASE were all associated with striatal loss. Additionally, tongue force deficits and ASE were associated with volume reduction in the occipital lobe. Impaired recognition of negative emotions was associated with volumetric reductions in the precuneus and cuneus. Our study reveals specific associations between atrophy and decline in a range of clinical modalities, demonstrating the utility of VBM correlation analysis for investigating these relationships in HD

    Visuomotor integration deficits are common to familial and sporadic preclinical Alzheimer's disease.

    Get PDF
    We investigated whether subtle visuomotor deficits were detectable in familial and sporadic preclinical Alzheimer's disease. A circle-tracing task-with direct and indirect visual feedback, and dual-task subtraction-was completed by 31 individuals at 50% risk of familial Alzheimer's disease (19 presymptomatic mutation carriers; 12 non-carriers) and 390 cognitively normal older adults (members of the British 1946 Birth Cohort, all born during the same week; age range at assessment = 69-71 years), who also underwent β-amyloid-PET/MRI to derive amyloid status (positive/negative), whole-brain volume and white matter hyperintensity volume. We compared preclinical Alzheimer's groups against controls cross-sectionally (mutation carriers versus non-carriers; amyloid-positive versus amyloid-negative) on speed and accuracy of circle-tracing and subtraction. Mutation carriers (mean 7 years before expected onset) and amyloid-positive older adults traced disproportionately less accurately than controls when visual feedback was indirect, and were slower at dual-task subtraction. In the older adults, the same pattern of associations was found when considering amyloid burden as a continuous variable (Standardized Uptake Value Ratio). The effect of amyloid was independent of white matter hyperintensity and brain volumes, which themselves were associated with different aspects of performance: greater white matter hyperintensity volume was also associated with disproportionately poorer tracing accuracy when visual feedback was indirect, whereas larger brain volume was associated with faster tracing and faster subtraction. Mutation carriers also showed evidence of poorer tracing accuracy when visual feedback was direct. This study provides the first evidence of visuomotor integration deficits common to familial and sporadic preclinical Alzheimer's disease, which may precede the onset of clinical symptoms by several years

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Facial affect perception in psychosis: recent evidence

    No full text
    Background: Facial affect processing (FAP) deficits in schizophrenia (SZ) and bipolar disorder (BD) have been widely reported; although effect sizes vary across studies, and there are limited direct comparisons of the two groups. Conversely, no study has examined how schizoaffective disorder (SZA) patients perform on FAP tasks as an independent group (they are usually included within schizophrenia groups). Further, there is debate as to the influence of both psychotic and mood symptoms on FAP. Methods: This study aimed to address these limitations by recruiting groups of psychosis patients with either a diagnosis of SZ, BD or SZA and comparing them to healthy controls (HC) on a well validated battery of four FAP subtests: affect discrimination, name affect, select affect and match affect. Results: Overall, SZ patients performed poorly on all four subtests, with SZA patients performing similarly to the SZ group, although group comparisons between SZA and HC were not significant on all subtests due to limited sample size of the SZA group. The BD patients showed impaired performance specifically on the match affect subtest, a task that had a high cognitive load. Their performance on the other three subtests was similar to the HC group. FAP performance in the psychosis patients was correlated with severity of positive symptoms and mania. Discussion: This study confirmed that FAP deficits are a potential social cognitive endophenotype for SZ and SZA, independent of the specific methodology of the task; whilst deficits in BD are more subtle. It appears that deficits in BD are more apparent during conditions of high cognitive load, although further work with this group is recommended. In this large sample of psychosis patients FAP deficits were associated with positive psychotic symptom severity, in contrast to previous work that has suggested negative symptoms are associated

    Is semantic processing impaired in individuals with high schizotypy?

    No full text
    Semantic processing deficits are present in schizophrenia. However, this research has often been criticized for methodological artifacts and confounds, including long hospitalizations and medication of patient samples. Utilizing high schizotypes (psychosis-prone individuals) can overcome these confounds. Previously, similar deficits have been reported in high schizotypes and schizophrenia on semantic priming tasks. In contrast to schizophrenia research, no other types of semantic processing have been examining in high schizotypes. Semantic processing is multifaceted, thus, deficits on semantic priming can not answer whether high schizotypes have difficulty with explicit semantic processing, that is, on tasks that require the conscious recollection of semantic information. In the current study, 24 high and 30 low scorers on the O-LIFE schizotypy scale were administered a battery of semantic processing measures. The high schizotypy group did not show global semantic processing impairments (as has been shown in schizophrenia), only impairments on a task designed to examine subtle categorization processing. Such deficits can be equated to those found on semantic priming tasks, in that both require quick and accurate access to semantic networks
    corecore