725 research outputs found
Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction
The expansion of protein-ligand annotation databases has enabled large-scale networking of proteins by ligand similarity. These ligand-based protein networks, which implicitly predict the ability of neighboring proteins to bind related ligands, may complement biologically-oriented gene networks, which are used to predict functional or disease relevance. To quantify the degree to which such ligand-based protein associations might complement functional genomic associations, including sequence similarity, physical protein-protein interactions, co-expression, and disease gene annotations, we calculated a network based on the Similarity Ensemble Approach (SEA: sea.docking.org), where protein neighbors reflect the similarity of their ligands. We also measured the similarity with functional genomic networks over a common set of 1,131 genes, and found that the networks had only small overlaps, which were significant only due to the large scale of the data. Consistent with the view that the networks contain different information, combining them substantially improved Molecular Function prediction within GO (from AUROC~0.63-0.75 for the individual data modalities to AUROC~0.8 in the aggregate). We investigated the boost in guilt-by-association gene function prediction when the networks are combined and describe underlying properties that can be further exploited
The First Data Release of the KODIAQ Survey
We present and make publicly available the first data release (DR1) of the
Keck Observatory Database of Ionized Absorption toward Quasars (KODIAQ) survey.
The KODIAQ survey is aimed at studying galactic and circumgalactic gas in
absorption at high-redshift, with a focus on highly-ionized gas traced by OVI,
using the HIRES spectrograph on the Keck-I telescope. KODIAQ DR1 consists of a
fully-reduced sample of 170 quasars at 0.29 < z_em < 5.29 observed with HIRES
at high resolution (36,000 <= R <= 103,000) between 2004 and 2012. DR1 contains
247 spectra available in continuum normalized form, representing a sum total
exposure time of ~1.6 megaseconds. These co-added spectra arise from a total of
567 individual exposures of quasars taken from the Keck Observatory Archive
(KOA) in raw form and uniformly processed using a HIRES data reduction package
made available through the XIDL distribution. DR1 is publicly available to the
community, housed as a higher level science product at the KOA. We will provide
future data releases that make further QSOs, including those with pre-2004
observations taken with the previous-generation HIRES detectors.Comment: 14 pages, 9 figures, Submitted to AJ. All data products available at
the Keck Observatory Archive beginning May 15, 2015. URL:
https://koa.ipac.caltech.edu/applications/KODIA
Malaria vaccine efficacy: the difficulty of detecting and diagnosing malaria
New sources of funding have revitalized efforts to control malaria. An effective vaccine would be a tremendous asset in the fight against this devastating disease and increasing financial and scientific resources are being invested to develop one. A few candidates have been tested in Phase I and II clinical trials, and several others are poised to begin trials soon. Some studies have been promising, and others disappointing. It is difficult to compare the results of these clinical trials; even independent trials of the same vaccine give highly discrepant results. One major obstacle in evaluating malaria vaccines is the difficulty of diagnosing clinical malaria. This analysis evaluates the impact of diagnostic error, particularly that introduced by microscopy, on the outcome of efficacy trials of malaria vaccines and make recommendations for improving future trials
Improvement of stabilizer based entanglement distillation protocols by encoding operators
This paper presents a method for enumerating all encoding operators in the
Clifford group for a given stabilizer. Furthermore, we classify encoding
operators into the equivalence classes such that EDPs (Entanglement
Distillation Protocol) constructed from encoding operators in the same
equivalence class have the same performance. By this classification, for a
given parameter, the number of candidates for good EDPs is significantly
reduced. As a result, we find the best EDP among EDPs constructed from [[4,2]]
stabilizer codes. This EDP has a better performance than previously known EDPs
over wide range of fidelity.Comment: 22 pages, 2 figures, In version 2, we enumerate all encoding
operators in the Clifford group, and fix the wrong classification of encoding
operators in version
The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are A Major Reservoir of Galactic Metals
The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of
intergalactic gas, but its mass, heavy element enrichment, and relation to
galaxy properties are poorly constrained by observations. In a survey of the
outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the
Hubble Space Telescope, we detected ubiquitous, large (150 kiloparsec) halos of
ionized oxygen surrounding star-forming galaxies, but we find much less ionized
oxygen around galaxies with little or no star formation. This ionized CGM
contains a substantial mass of heavy elements and gas, perhaps far exceeding
the reservoirs of gas in the galaxies themselves. It is a basic component of
nearly all star-forming galaxies that is removed or transformed during the
quenching of star formation and the transition to passive evolution.Comment: This paper is part of a set of three papers on circumgalactic gas
observed with the Cosmic Origins Spectrograph on HST, to be published in
Science, together with related papers by Tripp et al. and Lehner & Howk, in
the November 18, 2011 edition. This version has not undergone final
copyediting. Please see Science online for the final printed versio
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years
Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival
MiRNAs regulate gene expression at a post-transcriptional level and their dysregulation can play major roles in the pathogenesis of many different forms of cancer, including neuroblastoma, an often fatal paediatric cancer originating from precursor cells of the sympathetic nervous system. We have analyzed a set of neuroblastoma (n = 145) that is broadly representative of the genetic subtypes of this disease for miRNA expression (430 loci by stem-loop RT qPCR) and for DNA copy number alterations (array CGH) to assess miRNA involvement in disease pathogenesis. The tumors were stratified and then randomly split into a training set (n = 96) and a validation set (n = 49) for data analysis. Thirty-seven miRNAs were significantly over-or under-expressed in MYCN amplified tumors relative to MYCN single copy tumors, indicating a potential role for the MYCN transcription factor in either the direct or indirect dysregulation of these loci. In addition, we also determined that there was a highly significant correlation between miRNA expression levels and DNA copy number, indicating a role for large-scale genomic imbalances in the dysregulation of miRNA expression. In order to directly assess whether miRNA expression was predictive of clinical outcome, we used the Random Forest classifier to identify miRNAs that were most significantly associated with poor overall patient survival and developed a 15 miRNA signature that was predictive of overall survival with 72.7% sensitivity and 86.5% specificity in the validation set of tumors. We conclude that there is widespread dysregulation of miRNA expression in neuroblastoma tumors caused by both over-expression of the MYCN transcription factor and by large-scale chromosomal imbalances. MiRNA expression patterns are also predicative of clinical outcome, highlighting the potential for miRNA mediated diagnostics and therapeutics
Interaction of Cryptococcus neoformans Rim101 and Protein Kinase A Regulates Capsule
Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions
- …