68 research outputs found

    Investigating the influence of the constituent materials on the performance of periodic piezoelectric composite arrays

    Get PDF
    This paper describes a theoretical investigation into the influence of the constituent materials on periodic composite array transducer performance. A finite element (FE) model, configured in PZFlex, is used to analyze the performance of a wedge coupled array transducer operating into a steel component. Here, the improvements offered by new single crystal piezoelectric materials are compared to standard PZT‐based configurations. In addition, new passive polymer materials, possessing low longitudinal loss and high shear loss, are evaluated for their potential to significantly reduce inter‐element mechanical cross talk. The FE results illustrate the potential for the next generation of array transducers incorporating these new materials and this is highlighted in the A‐scan predictions from simulated defects

    Predicting oral anticoagulant response using a pharmacodynamic model

    Full text link
    We developed a pharmacokinetic and pharmacodynamic model of warfarin absorption, metabolism, and anticoagulant action appropriate for guiding anticoagulant therapy. The model requires only two independently adjustable parameters to describe warfarin's effect on individual patients. For any given individual, these parameters are rapidly and inexpensively identified using a computer program based on the model. Test data were generated by superimposing Gaussian noise on dose-response curves calculated with the model. Then the computer program was applied to the test data. Future prothrombin complex activities (PCA's) and maintenance doses were predicted accurately early in the course of drug administration. In addition, the program accurately predicted PCA response in two groups of normal volunteers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44006/1/10439_2006_Article_BF02363455.pd

    Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 25 (2008): 942-951, doi:10.1016/j.marpetgeo.2008.01.016.Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum δ13C dissolved inorganic carbon (DIC) values of −55.9‰ to −64.8‰ at the sulfate–methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the δ13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.This work was supported by DOE’s National Energy Technology Laboratory, the Office of Naval Research, and the Naval Research Laboratory. J.W.P was supported by a USGS Mendenhall Postdoctoral Research Fellowship Program during preparation of this manuscript

    Halophyte and glycophyte salt tolerance at germination and the establishment of halophyte shrubs in saline environments

    No full text
    Saline sites suffer variations in surface salinity, available soil water, temperature, soil crust strength and other factors which can influence germination and establishment. For establishment to occur the germinating seed must capitalise on a window of opportunity. This window can be widened by placing seeds in a low-salt niche, covering the seeds with a mulch (such as vermiculite), spraying the seed and mulch placement with a coating which may stabilise the favourable situation and raise soil temperature. In this paper it is shown that using seeds collected from plants of Atriplex amnicola which produce many volunteer seedlings in their vicinity can assist establishment from direct seeding. These seeds had the ability to germinate under saltier and cooler conditions than seeds from A. amnicola bushes which did not produce volunteers. Seeds of a halophyte (Atriplex lentiformis) and a non-halophyte (Medicago sativa) are able to imbibe water from a saline substrate in a similar manner. The water enables the seeds of both species to mobilise stored growth materials and produce and elongate radicles. When the seedlings try to erect a hypocotyl and spread their cotyledons, the non-halophyte, in a saline medium, becomes flaccid, distorted and dies. The halophyte seedling shows evidence of high salt tolerance in the form of succulence of cotyledons and trichomes on true leaves even before they are visible and goes on to successfully develop a functioning plant. Nevertheless, germination of halophyte seeds is inhibited or severely reduced at salinity levels above 250 mM NaCl and slowed and reduced progressively up to those levels
    corecore