1,396 research outputs found

    Tarland Burn 'restoration': preliminary monitoring recommendations

    Get PDF

    Visual discomfort and depth-of-field

    Get PDF
    Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth. Earlier research has shown that depth-of-field, which is the distance range in depth in the scene that is perceived to be sharp, influences both the perception of egocentric distance to the focal plane, and the distance range in depth between objects in the scene. Because depth-of-field may also be in conflict with convergence and the accommodative state of the eyes, we raised the question of whether depth-of-field affects discomfort when viewing stereoscopic photographs. The first experiment assessed whether discomfort increases when depth-of-field is in conflict with coherent accommodation-convergence cues to distance in depth. The second experiment assessed whether depth-of-field influences discomfort from a pre-existing accommodation-convergence conflict. Results showed no effect of depth-of-field on visual discomfort. These results suggest therefore that depth-of-field can be used as a cue to depth without inducing discomfort in the viewer, even when cue conflicts are large. © 2013 L O'Hare, T Zhang, H T Nefs, P B Hibbard

    Remote activation of host cell DNA synthesis in uninfected cells signalled by infected cells in advance of virus transmission.

    No full text
    Viruses modulate cellular processes and metabolism in diverse ways, but these are almost universally studied in the infected cell itself. Here, we study spatial organization of DNA synthesis during multiround transmission of herpes simplex virus (HSV) using pulse-labeling with ethynyl nucleotides and cycloaddition of azide fluorophores. We report a hitherto unknown and unexpected outcome of virus-host interaction. Consistent with the current understanding of the single-step growth cycle, HSV suppresses host DNA synthesis and promotes viral DNA synthesis in spatially segregated compartments within the cell. In striking contrast, during progressive rounds of infection initiated at a single cell, we observe that infection induces a clear and pronounced stimulation of cellular DNA replication in remote uninfected cells. This induced DNA synthesis was observed in hundreds of uninfected cells at the extended border, outside the perimeter of the progressing infection. Moreover, using pulse-chase analysis, we show that this activation is maintained, resulting in a propagating wave of host DNA synthesis continually in advance of infection. As the virus reaches and infects these activated cells, host DNA synthesis is then shut off and replaced with virus DNA synthesis. Using nonpropagating viruses or conditioned medium, we demonstrate a paracrine effector of uninfected cell DNA synthesis in remote cells continually in advance of infection. These findings have significant implications, likely with broad applicability, for our understanding of the ways in which virus infection manipulates cell processes not only in the infected cell itself but also now in remote uninfected cells, as well as of mechanisms governing host DNA synthesis. IMPORTANCE We show that during infection initiated by a single particle with progressive cell-cell virus transmission (i.e., the normal situation), HSV induces host DNA synthesis in uninfected cells, mediated by a virus-induced paracrine effector. The field has had no conception that this process occurs, and the work changes our interpretation of virus-host interaction during advancing infection and has implications for understanding controls of host DNA synthesis. Our findings demonstrate the utility of chemical biology techniques in analysis of infection processes, reveal distinct processes when infection is examined in multiround transmission versus single-step growth curves, and reveal a hitherto-unknown process in virus infection, likely relevant for other viruses (and other infectious agents) and for remote signaling of other processes, including transcription and protein synthesis

    Biomechanics of aquatic plants and its role in flow-vegetation interactions

    Get PDF
    River hydrodynamicsBed roughness and flow resistanc

    The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England

    Get PDF
    publisher: Elsevier articletitle: The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England journaltitle: Marine Geology articlelink: http://dx.doi.org/10.1016/j.margeo.2016.10.011 content_type: article copyright: © 2016 The Authors. Published by Elsevier B.V

    Classification of fresh edible oils using a coated piezoelectric sensor array-based electronic nose with soft computing approach for pattern recognition

    Get PDF
    An electronic nose based on an array of six bulk acoustic wave polymer-coated piezoelectric quartz (PZQ) sensors with soft computing-based pattern recognition was used for the classi-fication of edible oils. The electronic nose was presented with 346 samples of fresh edible oil headspace volatiles, generated at 45°C. Extra virgin olive (EVO), nonvirgin olive oil (NVO) and sunflower oil (SFO) were used over a period of 30 days. The sensor responses were visualized by plotting the results from principal component analysis (PCA). Classification of edible oils was carried out using fuzzy c-means as well as radial basis function (RBF) neural networks both from a raw data and data after having been preprocessed by fuzzy c-means. The fuzzy c-means results were poor (74%) due to the different cluster sizes. The result of RBF with fuzzy c-means preprocessing was 95% and 99% for raw data input. RBF networks with fuzzy c-means preprocessing provide the advantage of a simple architecture that is quicker to train.</p
    • …
    corecore