4 research outputs found

    Divergent antimicrobial peptide (AMP) and acute phase protein (APP) responses to Trypanosoma congolense infection in trypanotolerant and trypanosusceptible cattle

    No full text
    Morris Agaba is ILRI authorAfrican animal trypanosomiasis (AAT) is endemic across Sub-Saharan African and is a major constraint to livestock production. The ability of certain cattle breeds to remain productive despite infection is known as trypanotolerance; however, the underlying immune mechanisms contributing to this trait remain poorly understood. Antimicrobial peptides (AMPs) and acute phase proteins (APPs) are evolutionarily conserved effector molecules of the innate immune system that have important roles in the resolution of infection and activation of the adaptive immune response. Expression levels of AMP genes (TAP, LAP, BNBD4, DEFB1, DEFB5 and LEAP2) and APP genes (HP, CP, AGP, LBP, SAA3 and CRP) were investigated using real time quantitative reverse transcription PCR (qRT-PCR) in peripheral blood mononuclear cells (PBMC) isolated from two breeds of African cattle (trypanotolerant N’Dama and trypanosusceptible Boran), experimentally infected with Trypanosoma congolense. Haptoglobin and serum amyloid A (SAA) were also measured in plasma using quantitative protein assays. Results demonstrated that tracheal antimicrobial peptide (TAP) gene expression increased by 32-fold in Boran, compared to only 3-fold in N’Dama, by 14 days post-infection (dpi) and rising to 136-fold at 29 dpi in Boran, compared to 47-fold in N’Dama (P < 0.05). Protein expression levels of SAA are elevated in N’Dama, rising to 163 μg/ml at 14 dpi compared with 72 μg/ml in Boran. The SAA expression profile mirrors the wave of parasitaemia detected in N’Dama. Seven single nucleotide polymorphisms (SNPs) were identified in the promoter regions of the SAA3 and SAA4 genes, which are predicted to affect transcription factor binding and thereby contributing to the differential patterns of expression detected between the breeds. Whereas elevated TAP expression is a conserved component of the innate immune response to infection in both breeds, higher SAA expression levels may contribute toward trypanotolerance in N’Dama

    Variation in chicken populations may affect the enzymatic activity of lysozyme

    No full text
    The chicken lysozyme gene encodes a hydrolase that has a key role in defence, especially in ovo. This gene was resequenced in global chicken populations [red, grey, Ceylon and green jungle fowl (JF)] and related bird species. Networks, summary statistics and tests of neutrality indicate that although there is extensive variation at the gene, little is present at coding sites, with the exception of one non-synonymous site. This segregating site and a further fixed non-synonymous change between red JF and domestic chicken populations are spatially close to the catalytic sites of the enzyme and so might affect its activity

    Contrasting evolution of diversity at two disease-associated chicken genes

    No full text
    Olivier Hanotte is ILRI authorThere have been significant evolutionary pressures on the chicken during both its speciation and its subsequent domestication by man. Infectious diseases are expected to have exerted strong selective pressures during these processes. Consequently, it is likely that genes associated with disease susceptibility or resistance have been subject to some form of selection. Two genes involved in the immune response (interferon-γ and interleukin 1-β) were selected for sequencing in diverse chicken populations from Pakistan, Sri Lanka, Bangladesh, Kenya, Senegal, Burkina Faso and Botswana, as well as six outgroup samples (grey, green, red and Ceylon jungle fowl and grey francolin and bamboo partridge). Haplotype frequencies, tests of neutrality, summary statistics, coalescent simulations and phylogenetic analysis by maximum likelihood were used to determine the population genetic characteristics of the genes. Networks indicate that these chicken genes are most closely related to the red jungle fowl. Interferon-γ had lower diversity and considerable coding sequence conservation, which is consistent with its function as a key inflammatory cytokine of the immune response. In contrast, the pleiotropic cytokine interleukin 1-β had higher diversity and showed signals of balancing selection moderated by recombination, yielding high numbers of diverse alleles, possibly reflecting broader functionality and potential roles in more diseases in different environments

    Purulent vaginal discharge diagnosed in pasture-based Holstein-Friesian cows at 21 days postpartum is influenced by previous lactation milk yield and results in diminished fertility

    Get PDF
    peer-reviewedIn a subset of dairy cows, prolonged pathological uterine inflammation results in purulent vaginal discharge (PVD), which can have negative consequences for both fertility and milk production. However, unlike for intensive systems, analysis of the effects of PVD in predominantly pasture-based herds is limited. The objective of this study was to assess the effect of PVD in spring-calving, pasture-based dairy cows on production and reproduction indices, stratified according to previous full-lactation milk yield. We assessed clinical disease as defined by vaginal mucus score (VMS) in 440 Holstein-Friesian cows from 5 farms. Cows were categorized as healthy (VMS 0) or having PVD (VMS 1–3) at 21 d postpartum. We recorded 305-d milk, milk protein, and milk fat yields (kg) before and after disease diagnosis, as well as fertility data, such as services per conception and the calving–conception period (CCP). Using SAS 9.4 (SAS Institute Inc., Cary, NC), we analyzed data using PROC MIXED, PROC PHREG, and PROC LOGISTIC to determine the least squares means differences and hazard and odds ratios between the groups, respectively. Overall, a 60% prevalence of PVD was recorded at 21 d postpartum. Milk yield and milk constituents were similar between all VMS categories and between healthy cows and cows with PVD. Although cows in the 4 VMS categories had statistically similar CCP, cows with PVD had a significantly longer CCP than healthy cows on average (9 d). The hazard ratio for cows with PVD was 0.66, indicating a 34% higher risk of a prolonged CCP than healthy cows. Odds ratio analysis determined that cows with PVD were 3 times more likely not to conceive at all, twice as likely not to conceive at first service, twice as likely not to conceive by 100 d postpartum, and 3 times more likely to fail to conceive before 150 d postpartum compared with healthy cows. Cows were retrospectively categorized as having low or high milk yield, based on whether they were above or below the median 305-d milk yield of the study population (6,571 kg) in the lactation before vaginal mucus scoring. Based on a univariate odds ratio, high-yield cows were 1.6 times more likely to present with PVD in the subsequent lactation. The number of services per conception did not differ between healthy and PVD cows in the low- and high-yield groups. In the high-yield group, cows with PVD were 4.9 times more likely not to conceive, 2.7 times more likely to require multiple services to conceive, 2.1 times more likely to remain not pregnant by 100 d postpartum, and 4.4 times more likely to remain not pregnant by 150 d postpartum. The CCP was also significantly longer in cows with PVD than their healthy counterparts (115.9 ± 4.9 and 104 ± 7.4 d, respectively). In conclusion, PVD significantly increased the CCP in all cows, but to a greater extent in cows with a high milk yield in the lactation before disease diagnosis
    corecore