2,581 research outputs found

    Non-iterative downlink training sequence design based on sum rate maximization in FDD massive MIMO systems

    Get PDF
    This paper considers the problem of downlink (DL) training sequence design with limited coherence time for frequency division duplex (FDD) massive MIMO systems in a general scenario of single-stage precoding and distinct spatial correlations between users. To this end, a computationally feasible solution for designing the DL training sequences is proposed using the principle of linear superposition of sequences constructed from the users' channel covariance matrices. Based on the non-iterative superposition training structure and the P-degrees of freedom (P-DoF) channel model, a novel closed-form solution for the optimum training sequence length that maximizes the DL achievable sum rate is provided for the eigenbeamforming (BF) precoder. Additionally, a simplified analysis that characterizes the sum rate performance of the BF and regularized zero forcing (RZF) precoders in closed-form is developed based on the method of random matrix theory and the P-DoF channel model. The results show that the superposition training sequences achieve almost the same rate performances as state-of-the-art training sequence designs. The analysis of the complexity results demonstrates that more than four orders-of-magnitude reduction in the computational complexity is achieved using the superposition training design, which signifies the feasibility of this approach for practical implementations compared with state-of-the-art iterative algorithms for DL training designs. Importantly, the results indicate that the analytical solution for the optimum training sequence length with the P-DoF channel model can be effectively used with high accuracy to predict the sum rate performance in the more realistic one ring (OR) channel model, and thus, near optimal solutions can be readily obtained without resorting to computationally intensive optimization techniques

    Wiring Switches to Light Bulbs

    Get PDF
    Given n buttons and n bulbs so that the ith button toggles the ith bulb and at most two other bulbs, we compute the sharp lower bound on the number of bulbs that can be lit regardless of the action of the buttons.Comment: 19 pages, 14 figure

    Hierarchical priority setting for restoration in a watershed in NE Spain, based on assessments of soil erosion and ecosystem services

    Get PDF
    31 páginas[EN] Maintaining and enhancing ecosystem services through the restoration of degraded ecosystems have become an important biodiversity conservation strategy. Deciding where to restore ecosystems for the attainment of multiple services is a key issue for future planning, management, and human well-being. Most restoration projects usually entail a small number of actions in a local area and do not consider the potential benefits of planning restoration at broad regional scales. We developed a hierarchical priority setting approach to evaluate the performance of restoration measures in a semiarid basin in NE Spain (the Martín River Basin, 2,112 km2). Our analysis utilized a combination of erosion (a key driver of degradation in this Mediterranean region) and six spatially explicit ecosystem services data layers (five of these maps plotted surrogates for soil retention and accumulation, water supply and regulation, and carbon storage, and one plotted a cultural service, ecotourism). Hierarchical maps were generated using a geographic information system that combined areas important for providing a bundle of ecosystem services, as state variables, with erosion maps, as the disturbance or regulatory variable. This was performed for multiple scales, thereby identifying the most adequate scale of analysis and establishing a spatial hierarchy of restoration actions based on the combination of the evaluation of erosion rates and the provision of ecosystem services. Our approach provides managers with a straightforward method for determining the spatial distribution of values for a set of ecosystem services in relation to ecological degradation thresholds and for allocating efforts and resources for restoration projects in complex landscapes.This work was funded by Endesa S.A. through the collaborative agreement Endesa-CSIC for scientific research. The first author wants to thank Belinda Reyers for the fruitful conversation and helpfulness showed in every moment and two anonymous referees for their constructive suggestions. M. Trabucchi was in receipt of grant from JAE-DOC Program for Advanced Study financed by the European Social Fund (ESF), Ref. I3P-BPD-2006.Peer reviewe

    Reversible skew laurent polynomial rings and deformations of poisson automorphisms

    Get PDF
    A skew Laurent polynomial ring S = R[x(+/- 1); alpha] is reversible if it has a reversing automorphism, that is, an automorphism theta of period 2 that transposes x and x(-1) and restricts to an automorphism gamma of R with gamma = gamma(-1). We study invariants for reversing automorphisms and apply our methods to determine the rings of invariants of reversing automorphisms of the two most familiar examples of simple skew Laurent polynomial rings, namely a localization of the enveloping algebra of the two-dimensional non-abelian solvable Lie algebra and the coordinate ring of the quantum torus, both of which are deformations of Poisson algebras over the base field F. Their reversing automorphisms are deformations of Poisson automorphisms of those Poisson algebras. In each case, the ring of invariants of the Poisson automorphism is the coordinate ring B of a surface in F-3 and the ring of invariants S-theta of the reversing automorphism is a deformation of B and is a factor of a deformation of F[x(1), x(2), x(3)] for a Poisson bracket determined by the appropriate surface

    Optical energy-constrained slot-amplitude modulation for dimmable VLC. Suboptimal detection and performance evaluation

    Get PDF
    Energy-constrained slot-amplitude modulation (ECSAM) enables light dimming, eliminates light flicker and constrains the peak optical power while providing robust communication links. However, the complexity of the maximum-likelihood (ML) based ECSAM receiver increases exponentially with required spectral efficiency. This paper provides a comprehensive performance evaluation of ECSAM for the indoor visible light communication (VLC) channel with multipath propagation under realistic illumination constraints and imperfect channel estimation. A sub-optimal receiver that employs a slot-by-slot detection algorithm followed by a slot-correction mechanism for reducing the receiver complexity is proposed. Additionally, the method for optimal selection of parameters when designing the signal waveform is presented. The analytical upper bound on the symbol error rate of ECSAM is derived using the union-bound technique. The results show that the error performance of the sub-optimal receiver are comparable to that of the optimal ML receiver. Compared with conventional power or bandwidth efficient VLC modulation techniques such as multiple pulse position modulation (MPPM) and pulse amplitude modulation (PAM), ECSAM provides complete flexibility in modifying the signal constellation for a desired dimming level to maximise the spectral efficiency and provide a robust bit error rate performance especially in the multipath propagation channel induced intersymbol interference

    Hybridization of sub-gap states in one-dimensional superconductor/semiconductor Coulomb islands

    Full text link
    We present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without sub-gap states, Coulomb blockade reveals Cooper-pair mediated transport. When sub-gap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti) crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling. Overall results are consistent with a picture of overlapping Majorana zero modes in finite wires

    White Light Constrained Multi-Primary Modulation for Visible Light Communication

    Get PDF
    The application of visible light communication (VLC) systems is to transmit data while maintaining efficient and good quality illumination service. In order to meet standard lighting requirements when multi-colored modulation techniques are used, such as color shift keying (CSK), the color fluctuation becomes a relevant issue. This paper presents a multi- primary (multi-color) modulation technique which provides reliable data transmission while keeping a strong constraint on the light color illuminated by every symbol of the modulation alphabet. The number of possible primary color combinations that ensure white light are calculated for a given set of multi-color light sources. The system performance in terms of bit error rate for different constellation is evaluated and compared against other multi-color VLC schemes in the literature, considering a range of channel impairments due to the optical front-end components

    Sequence and structural evolution of the KsgA/Dim1 methyltransferase family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the 60 or so genes conserved in all domains of life is the <it>ksgA/dim1 </it>orthologous group. Enzymes from this family perform the same post-transcriptional nucleotide modification in ribosome biogenesis, irrespective of organism. Despite this common function, divergence has enabled some family members to adopt new and sometimes radically different functions. For example, in <it>S. cerevisiae </it>Dim1 performs two distinct functions in ribosome biogenesis, while human mtTFB is not only an rRNA methyltransferase in the mitochondria but also a mitochondrial transcription factor. Thus, these proteins offer an unprecedented opportunity to study evolutionary aspects of structure/function relationships, especially with respect to our recently published work on the binding mode of a KsgA family member to its 30S subunit substrate. Here we compare and contrast KsgA orthologs from bacteria, eukaryotes, and mitochondria as well as the paralogous ErmC enzyme.</p> <p>Results</p> <p>By using structure and sequence comparisons in concert with a unified ribosome binding model, we have identified regions of the orthologs that are likely related to gains of function beyond the common methyltransferase function. There are core regions common to the entire enzyme class that are associated with ribosome binding, an event required in rRNA methylation activity, and regions that are conserved in subgroups that are presumably related to non-methyltransferase functions.</p> <p>Conclusion</p> <p>The ancient protein KsgA/Dim1 has adapted to cellular roles beyond that of merely an rRNA methyltransferase. These results provide a structural foundation for analysis of multiple aspects of ribosome biogenesis and mitochondrial transcription.</p

    Photon Assisted Tunneling of Zero Modes in a Majorana Wire

    Full text link
    Hybrid nanowires with proximity-induced superconductivity in the topological regime host Majorana zero modes (MZMs) at their ends, and networks of such structures can produce topologically protected qubits. In a double-island geometry where each segment hosts a pair of MZMs, inter-pair coupling mixes the charge parity of the islands and opens an energy gap between the even and odd charge states at the inter-island charge degeneracy. Here, we report on the spectroscopic measurement of such an energy gap in an InAs/Al double-island device by tracking the position of the microwave-induced quasiparticle (qp) transitions using a radio-frequency (rf) charge sensor. In zero magnetic field, photon assisted tunneling (PAT) of Cooper pairs gives rise to resonant lines in the 2e-2e periodic charge stability diagram. In the presence of a magnetic field aligned along the nanowire, resonance lines are observed parallel to the inter-island charge degeneracy of the 1e-1e periodic charge stability diagram, where the 1e periodicity results from a zero-energy sub-gap state that emerges in magnetic field. Resonant lines in the charge stability diagram indicate coherent photon assisted tunneling of single-electron states, changing the parity of the two islands. The dependence of resonant frequency on detuning indicates a sizable (GHz-scale) hybridization of zero modes across the junction separating islands
    • …
    corecore