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Abstract 17 

Maintaining and enhancing ecosystem services through the restoration of degraded ecosystems has 18 

become an important biodiversity conservation strategy.  Deciding where to restore ecosystems for the 19 

attainment of multiple services, is a key issue for future planning, management and human wellbeing. 20 

Most restoration projects usually entail a small number of actions in a local area and do not consider the 21 

potential benefits of planning restoration at broad regional scales. We developed a hierarchical priority 22 

setting approach to evaluate the performance of restoration measures in a semi-arid basin in NE Spain 23 

(the Martín River Basin, 2,112 km2). Our analysis utilized a combination of erosion (a key driver of 24 

degradation in this Mediterranean region) and six spatially explicit ecosystem services data layers (five of 25 

these maps plotted surrogates for soil retention and accumulation, water supply and regulation and carbon 26 

storage, and one plotted a cultural service, eco-tourism). Hierarchical maps were generated using a 27 

Geographic Information System that combined areas important for providing a bundle of ecosystem 28 

services, as state variables, with erosion maps, as the disturbance or regulatory variable. This was 29 

performed for multiple scales, thereby identifying the most adequate scale of analysis and establishing a 30 

spatial hierarchy of restoration actions based on the combination of the evaluation of erosion rates and the 31 

provision of ecosystem services. Our approach provides managers with a straightforward method for 32 

determining the spatial distribution of values for a set of ecosystem services in relation to ecological 33 

degradation thresholds and for allocating efforts and resources for restoration projects in complex 34 

landscapes.  35 

 36 

 37 

 38 
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1. Introduction 40 

Soil erosion is a major threat to the continued provision of ecosystem services in large parts of the world 41 

(Brown 1981), particularly in arid and semiarid areas (Gisladottir and Stocking 2005; García-Ruiz 2010). 42 

The future global change scenario corroborates the negative effects of increasing drought in 43 

Mediterranean regions on vegetation (Schröter et al. 2005), with runoff and sediment yields increasing in 44 

association with decreasing plant cover (within threshold) (Quinton et al. 1997). These suggested 45 

scenarios are likely to result in greater amounts of soil being exposed to water and wind erosion (López 46 

et al. 1998). Additional factors that determine the predominance of erosion include the spatial scale, 47 

slope, rainfall magnitude-frequency-duration characteristics, the initial soil moisture content and soil 48 

biological activity (Cammeraat 2002). Intensive agriculture and mining are land-use activities that cause 49 

serious environmental problems and increased erosion across vast areas. These activities cause serious 50 

environmental problems and erosion across vast areas and result in enforced critical trade-offs for the 51 

associated societies (Zhang et al. 2007; Bernhardt and Palmer 2011; Carreño et al. 2011). 52 

A key issue in semiarid environments is determining how to prioritize areas for restoration to optimize 53 

erosion control. However, the challenge is how to combine this goal with the improved provision of vital 54 

ecosystem services, particularly water-related services reduce negative consequences for human 55 

development (Reynolds et al. 2007). Emerging policies are focused on ecosystem services and their 56 

inclusion in measures aimed at restoration and control of erosion. This emergency policy focus on 57 

ecosystem services represents a significant shift in the approach at the objectives of restoration (Bullock 58 

et al. 2011). Different organizations have set targets for ceasing biodiversity losses and the degradation of 59 

ecosystem services and restoring them ‘so far as feasible’ (European Commission 2011, MA 2003). To 60 

meet these policy objectives, there is growing interest in the development of tools and methods for 61 

identifying and evaluating ecosystem services and incorporating these measures into policies related to 62 

landscape planning, management and the allocation of environmental resources (Ruiz-Navarro et al. 63 

2012; de Groot et al. 2010). This is particularly the case with regard to degraded areas and when 64 

attempting to understand trade-offs that arise related to land use and land cover planning (Rodríguez et al. 65 

2006).  66 

Mapping of ecosystem services has been identified as a useful aid in decision making during the 67 

allocation of efforts aimed at land use planning and management, particularly for the restoration of 68 
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degraded areas (Reyers et al. 2009; Pert et al. 2010; Carreño et al. 2011). To obtain a complete 69 

understanding of the services provided in a study area, research should ideally be conducted at multiple, 70 

nested scales, as environmental effects may be uncorrelated across scales (MA, 2003). The extent to 71 

which ecosystem services can be integrated into basin-scale restoration projects that are focused on 72 

reversing these trends remains largely untested, despite the recent and growing number of studies focused 73 

on this broader topic (Fisher et al. 2009).   74 

To understand how landscapes affect and are affected by biophysical and socioeconomic activities, we 75 

must be able to quantify spatial heterogeneity and its scale dependence (i.e., how patterns change with 76 

scale) (Wu 2004). Hierarchy theory is applied to the development and organization of landscape patterns 77 

and is best understood if tested across spatial and temporal scales (Bourgeron and Jensen 1993). 78 

Disturbance events such as soil erosion, which maintain landscape patterns and ecosystem sustainability, 79 

are also spatial-temporal scale-dependent phenomena (Turner et al. 1993). Acknowledgment of this 80 

situation is critical for the development of management strategies aimed at ecosystem sustainability 81 

(McIntosh et al. 1994). Watershed risk analysis procedures can be used to consider the effects of 82 

rehabilitation treatments on watershed-level hazards, the consequences of inaction and the resources at 83 

stake (Milne and Lewis 2011). The combined analysis of areas that are important for the supply or 84 

provision of a suite of services employing erosion maps representing multiple scales should provide 85 

useful information for the establishment of priority areas for the restoration of watersheds (Orsi et al. 86 

2011; Su et al. 2012; Trabucchi et al. 2012b). Historic restoration efforts have been primarily focused at a 87 

single scale (such as on stands or stream reaches) (Bailey et al. 1993; Milne 1994) and have relied on site-88 

level information to direct restoration actions (Bohn and Kershner 2002). As a result, many restoration 89 

programs lack the ability to scale up their findings. This situation has prompted the call for the adoption 90 

of a multi-scale approach in planning ecological restoration policies (Ziemer 1997; Hobbs and Harris 91 

2001; Comín 2010). Here, each restoration activity should be evaluated across a hierarchy of scales 92 

ranging from a broad region to an individual site, as the success of a local project depends on how well 93 

that project contributes to a comprehensive restoration strategy (Ziemer 1999; Palik et al. 2000). 94 

Landscape-level empirical studies are required for determining the kinds of scaling relationships that may 95 

exist and how variable or consistent they are (Wu 2004).  96 

The aim of this study is to present a simple approach for targeting and prioritizing sites for land 97 

management and restoration actions in a Mediterranean semiarid region. We focused on the potential 98 
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benefits of restoration across a hierarchy of spatial scales through the inclusion of both ecosystem 99 

services and erosion maps. We assessed the congruence between ecosystem services and erosion rates at 100 

different spatial scales, creating hierarchical maps to derive assessment units for the evaluation of the 101 

ecological status of the entire region. This procedure allowed us to assess resource management and 102 

restoration and to determine whether patterns in the relationship between these two contrasting 103 

characteristics and the criteria for establishing spatial priorities for restoration are maintained across 104 

spatial scales.  105 

2. Methods 106 

2.1. Study area  107 

The Martín River Basin is a 2,112 km2 watershed located in the south-central region of the Ebro River 108 

Basin in Aragón in NE Spain (Fig. 1). The altitude in this area ranges between 143 and 1620 m above sea 109 

level and the annual average precipitation is 360 mm yr-1. The Martín Basin is a water-limited semiarid 110 

environment in which water availability restricts rangeland production as well as dryland and irrigated 111 

farming, which are the basis of the local economy.  112 

The basin is composed of two distinct regions: the north and south. In the lowlands in the north, dry 113 

cereal cultivation dominates and the soils are predominantly regosols, rendsina-lithosols, calcic cambisols 114 

and yermosols. These soils are prone to erosion when inappropriate land use management practices are 115 

applied, particularly on steep slopes (FAO-UNESCO 1988),. Centuries of overgrazing and deforestation 116 

in this region, combined with its dry climate and wind erosion (López et al. 1998), have resulted in large-117 

scale degradation.  118 

Whereas, in the highlands located in the southern part of the basin, grasslands, shrublands and hardwood 119 

conifers dominate the landscape. In this region, mining became the predominant economic activity 120 

beginning in the early twentieth century, including the mining of coal (Lignite or brown coal), iron, 121 

gypsum, lead and salt. Since the boom in 1980’s surface mining (when there were 17 mines in operation 122 

in this region), the activity has strongly declined. Only three mines are cirrently in operation, and a recent 123 

Global Financial Crisis in this economic activity has forced economic restructuring (Comín et al. 2009). 124 

Some of these mines have been abandoned (due to the absence of an obligation for companies to restore 125 

them until 1985) and some have been restored over the last 10 years using a variety of different 126 
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techniques. The mines cover an area of the total basin of 27.2 km2 (0.8%) (Comín et al. 2009). The runoff 127 

from mined areas varies and is influenced by the restoration status (see Trabucchi et al., 2012a). 128 

Forests previously found along floodplains have been replaced by horticulture, which has impacted river 129 

channel dynamics. The remaining natural vegetation cover here accounts for less than 30% of the total 130 

cover and occupies a band of less than 10 m wide along most rivers and canyons in the basin. Only 131 

certain sections exhibit native forest fringes along channels and these are narrow and discontinuous, being 132 

dominated by Populus, Salix, Betula, Ulmus and Tamarix bushes and reed beds (Hydrologic plan-report 133 

DGA, ftp://oph.chebro.es:2121/BulkDATA/DOCUMENTACION/DirectivaMarco/Martin ). 134 

2.2. Data 135 

2.2.1 Ecosystem services 136 

Five ecosystem services were selected based on key environmental characteristics required for the 137 

ecological functioning and biophysical potential of the Martín Basin. This set includes five supply-side-138 

focused regulatory service surrogates: soil retention, soil accumulation, water supply, water regulation 139 

and carbon storage. A cultural service defined as potential recreation and ecotourism services was added 140 

to our suite of surrogate of services due to the presence of a cultural park that crosses the central part of 141 

the basin through paths in a high-value natural and cultural landscape (for further details, see M. 142 

Trabucchi’s PhD thesis). The services considered in this study are universally important: both soil and 143 

water resources are highly stressed, especially in semiarid Mediterranean areas, whereas carbon 144 

sequestration benefits the global community. Due to some consideration given to our study area, we were 145 

unable to focus on demand-side issues and beneficiaries. 146 

Ecosystem service bundles were evaluated in terms of their area of production and overlap with one 147 

another, forming a unique map with values ranging from 0 to 6 following the majority rule, which is one 148 

of the most commonly used methods for aggregating categorical data in ecology (Wu 2004). To keep our 149 

methodology as simple as possible, we did not consider the flow of a service, evaluating only its presence 150 

or absence and each raster cell was reclassified as having a 1 (presence) or 0 value (absence). Finally, a 151 

congruence analysis was undertaken to compare erosion and ecosystem service areas using the combined 152 

potential within the raster calculator of the spatial analyst in ArcGIS (Environmental Systems Research 153 

Institute 2008). The grids of the mean erosion per geographical unit and ecosystem services were summed 154 

to obtain attribute tables. For each geographic unit, the relationship between the mean erosion value as a 155 
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pressure factor and the ecosystem service bundle as a state factor was plotted to investigate possible 156 

patterns for prioritizing restoration efforts at different scales. A brief description of how each service was 157 

mapped is provided in the following sections.  158 

2.2.1.1. Surface water supply 159 

This service was defined as the capacity of a unit of the study area to deliver surface water for human use 160 

to other parts of the basin. The surface water supply is a function of the quantity of water provided for 161 

direct use by humans. The Spanish Integrated Water Information System (SIA, 162 

http://servicios2.marm.es/sia/visualizacion/lda/recursos/superficiales_escorrentia.jsp) mapped important 163 

areas for delivering a water supply at 1km cell size as total runoff. The raster layer was resampled at 20 m 164 

cell size (Trabucchi et al. submitted). In a semiarid area such as the Martín Basin, adequate management 165 

of areas to retain natural vegetation cover is vital for ensuring water base flows, improving water quality 166 

and retaining both nutrients and sediments (Scanlon et al. 2002).  167 

2.2.1.2. Water flow regulation  168 

Regulation of water flows reduces the impact of floods and droughts also affects aquaticbiodiversity on 169 

downstream land areas as well as soil erosion. Vegetation cover plays a key role in the delivery of this 170 

service, typically resulting in lower surface flows to nearby waterways. The recharge area for the entire 171 

Ebro Basin has been mapped for the Ebro River Basin Authority (CHE) as mm/year per 350 m cell (see 172 

CHE 173 

http://iber.chebro.es/sitebro/sitebro.aspx). This layer was used as a surrogate for evaluating this service, as 174 

it represents the amount of water that does not run off. The greater the amount of water infiltration into 175 

the soil, the greater the capacity for regulating surface water flows. Trabucchi et al. (submitted) extracted 176 

and resampled the data from this study using a 20 m cell size. 177 

2.2.1.3. Carbon storage  178 

Carbon storage data were extracted from the DGA-CITA database regarding the CO2 stored in woody 179 

vegetation in Aragón (Spain) and the role of forests as a CO2 sink (unpublished 2008 180 

http://www.aragon.es/estaticos/GobiernoAragon/Departamentos/MedioAmbiente/Areas/03_Cambio_clim181 

atico/06_Proyectos_actuaciones_Emisiones_GEI/estudio.pdf). The data are expressed in metric tons of 182 
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CO2 equivalents (T CO2-eq) for different woody vegetation types and were calculated using national 183 

forest map (1:50000), plant diameter from the third National Forest Inventory map and allometric 184 

equations. This polygon layer was converted to a 20 m cell size raster layer to facilitate calculation. 185 

2.2.1.4. Soil retention  186 

Trabucchi et al. (submitted) mapped soil retention in the Martín Basin using a 20 m cell size, based on 187 

plant cover information and erosion estimations obtained from Trabucchi et al. (2012a). As stated in this 188 

previous report, to avoid errors in soil erosion estimation, we masked areas with a slope >30º (i.e., the 189 

angle of repose for most loose sediments) with an erosion value of 0 and we employed aerial photographs 190 

to delineate rocky areas where little sheet or rill erosion normal occurs. Soil retention was then 191 

categorized in areas with low and very low potential erosion and a vegetation cover of at least 30%. We 192 

assume that the potential for this service is relatively low in areas with little natural vegetation cover. 193 

Areas prone to irreversible degradation were defined as areas with a high or very high erosion potential 194 

and a continued vegetation cover of less than or equal to 30% of the soil surface. 195 

2.2.1.5. Soil accumulation  196 

We used the organic matter content as a surrogate for soil accumulation, as soil depth is positively 197 

correlated with soil organic matter (Yuan et al. 2006) and even small changes in the total C content can 198 

have disproportionately large impacts on key soil physical properties (Powlson et al. 2011). The functions 199 

performed by deep soils include retaining nutrients, facilitating water infiltration and storage (Kemper 200 

1993), preventing sheet erosion and maintaining the water quality in nearby water bodies (de Groot et al. 201 

2002). These are all crucial for the maintenance of ecosystem integrity in erosion-prone basins such as the 202 

Martín Basin. For the study area, Trabucchi et al. (submitted) extracted data from Jones et al. (2005) on 203 

organic carbon contents (OCTOP) from the European Soil Database using a 1 km resolution grid cell size 204 

and resampled these data at a 20 m cell size. The data are expressed as a percentage of the organic carbon 205 

content in the surface horizon.  206 

2.2.1.6. Potential recreation and ecotourism services 207 

Recreational and ecotourism services are the non-material benefits people obtain from ecosystems. 208 

Landscapes and the visual experience they offer have considerable value for society and are often the 209 

primary tourist attraction within an area, as well as contributing to the wellbeing of its residents (Brabyn 210 
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and Mark 2011). The Martín watershed is popular for recreational uses due to its wide open spaces and 211 

scenery (http://www.parqueriomartin.com). We used key tourism areas that need to be maintained in an 212 

attractive form, such as hiking and mountain biking routes with a high heritage and natural value, from 213 

the Cultural Park of the Martín River (2011) and generated their viewsheds in a geographic information 214 

system (GIS) which are the elements visible to the human eye walking along the routes. While we 215 

acknowledge that many other cultural aspects and values exist within this region, these tourism routes and 216 

viewsheds capture the potential for attracting visitors and providing socio-economic benefits to the local 217 

populations, which are key factors for socio-economic development and could have a major regulating 218 

impact on the area. Finally, a raster layer with a resolution of a 20 m cell size was generated. 219 

2.2.2. Priority soil erosion areas 220 

Soil erosion is counteracted by structural aspects of ecosystems, especially vegetation cover and 221 

associated root systems (Gyssels et al. 2005). Structural properties can be recreated through restoration 222 

actions, which, in turn, can create synergy among numerous ecosystem services (Bennett et al. 2009). 223 

Furthermore, areas vulnerable to erosion, as determined by rainfall, soil depth and texture, need to be 224 

identified and managed appropriately to retain soil, vegetation cover and associated service synergies. An 225 

erosion model based on RUSLE (Renard et al. 1997) coupled with GIS, allowed the identification of risk 226 

areas associated with erosion thresholds at multiple scales, where soil conservation practices were 227 

identified. Previously Trabucchi et al. (2012a) mapped erosion risk using the RUSLE model in the study 228 

area using a 20 m cell size, which is recognized as the most appropriate scale for estimating soil losses in 229 

semiarid areas (Ruiz-Navarro et al. 2012). This map was reclassified according to three thresholds: 0-12 t 230 

ha-1 yr-1, 12-17 t ha-1 yr-1 and > 17 t ha-1 yr-1, that are important for soil formation (Rojo 1990) and 231 

represent a critical range of acceptable limits for plant colonization in reclaimed Mediterranean 232 

environments, particularly for restored slopes in the study area (Moreno-de las Heras et al. 2011). 233 

Exceeding the highest threshold (>17 t ha-1 yr-1), results in irreversible soil degradation. The mean erosion 234 

value for each subwatershed level was generated for multiple scales using a ArcGis zonal statistics tool 235 

(Environmental Systems Research Institute 2008). To identify the erosive risk at each subwatershed level, 236 

we classified areas that presented proportionally higher standard deviations. A high standard deviation in 237 

a subwatershed corresponding to a low or medium mean erosion level in the same area indicates a 238 

concentrated erosion point inside the subwatershed. Examples of such points include mines, landslide 239 

sites and areas of intense human impacts or natural severe erosive processes, which can be easily 240 
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identified using the mean erosion vs. standard deviation relationship. In contrast to these areas, we 241 

identified areas that showed relatively low standard deviations or values similar to the mean values as 242 

representing widespread erosion inside the subwatershed (Fig. 2), possibly due to sparse vegetation cover 243 

or similar related factors. The relationship between the mean erosion rate per geographic unit 244 

(subwatershed level) and its standard deviation was plotted and investigated for the different scales in the 245 

Martín River Basin to facilitate the prioritization of restoration measures and to understand erosion 246 

distribution patterns at different scales. 247 

2.3. Regional multi-scale spatial analysis 248 

2.3.1. Delineation of subwatersheds among different spatial aggregation levels  249 

To perform a multi-scale analysis of erosion and ecosystem services, we distributed the basic information 250 

on these variables, available at a 20 m2 cell size, at three levels, or scales of pixel aggregation, moving 251 

gradually towards a finer resolution. We used the watershed tool in GIS to perform this analysis. 252 

Following this approach, we created three drainage networks for the Martín Basin with different numbers 253 

of subwatersheds, which are described here.  254 

We use three pixel spatial aggregations suitable for prioritization restoration actions, specifying the limit 255 

of pixels for flow accumulation, these being 20000 (level 1), 2000 (level 2) and 1000 (level 3).  256 

The spatial arrangement of the Martín Basin at subwatershed level 1 contained 67 subwatersheds (Fig. 2 257 

a), which presented a minimum area of 1.27 km2, a maximum of 120.9 km2 and an average of 28 km2. 258 

The second subwatershed, level 2, included 655 subwatersheds (Fig. 2 b), with a minimum area of 0.007 259 

km2, a maximum of 12.1 km2 and an average of 2.87 km2. Finally, subwatershed level 3 consisted of 2534 260 

subwatersheds (Fig. 2 c), with a minimum area of 0.006 km2, a maximum of 4.15 km2 and an average of 261 

0.75 km2. These subwatersheds are the functional ecological units for the delivery of the majority of our 262 

selected suite of ecosystem services, determining erosion dynamics and planning of restoration actions. 263 

Classifying assessment units directly assists in resource management, including restoration. 264 

Ecosystem service bundles and erosion maps were reclassified and summarized for every subwatershed 265 

level to create a new prioritization classification consisting of a combination of erosion rate thresholds 266 

and a number of services (Fig. 4). 267 

2.3.2. Comparison of management units  268 
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To investigate service delivery and erosion at the finest scale, we selected two subwatersheds from the 269 

first level presenting contrasting topographic features and land use practices as a case study. Our selection 270 

was made to facilitate the assessment and utility of our multi-spatial level approach for prioritizing 271 

restoration measures. Subwatershed number 4, located in the northern lowland region and subwatershed 272 

number 63, located in the south mountainous area (Fig. 2 a), were selected for this analysis. They were 273 

further investigated at the second and third levels (Fig. 5) to determine the optimal management area for 274 

planning restoration policies and to develop an understanding of how patterns of congruence change with 275 

scale. Subwatershed number 4 is a fairly homogeneous area that is mostly used for dryland and irrigation 276 

agriculture but also contains some remnant patches of shrubland. The erosion rate here was calculated to 277 

be 0.2 ± 64 t ha-1 year-1. In contrast, subwatershed number 63 contains a mix of conifer and hardwood 278 

forest, shrubs, grassland-scrublands, abandoned and restored mines, and dry agriculture areas. It has a 279 

calculated erosion rate of 0.5±165 t ha-1 year-1.  280 

3. Results 281 

3.1. Erosion patterns across subwatershed levels 282 

The landscape heterogeneity of the Martín Basin is a key determining factor explaining the erosion 283 

patterns in the region, with the northern area being predominantly flat and the southern area being 284 

mountainous, showing a considerable increase in slope, altitude and rainfall patterns. Contrasting the 285 

three spatial levels provides us with insights regarding how changes in spatial detail can facilitate the 286 

targeting of degraded areas. For example, in Fig. 2a, we are able to clearly identify areas with high 287 

erosion values grouped in the south and a large portion of the northern area showing a low erosion value. 288 

By increasing the resolution from the first level to the second level, we are able to differentiate three 289 

erosion thresholds in the northern region (Fig. 2 b, c). Furthermore, some areas identified at level one as 290 

showing low erosion were re-identified as presenting both medium and high erosion regions when 291 

examined at the finer detail of level 3, facilitating more precise identification and location of areas for 292 

restoration. The mean erosion rates (and the calculated standard deviations) exhibit similar values within 293 

single watersheds (Fig. 2a, b, c) and a direct relationship was observed between the mean erosion rates 294 

and the calculated standard deviations. Subwatershed erosion rates that exceed the highest erosion 295 

threshold, indicating areas subjected to a high erosion risk, can be easily identified (Fig. 2a,b,c). This 296 

pattern is repeated across different scales. However, the data dispersion increases as the detail of the 297 
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analysis increases through the three levels of data aggregation. At the third level, some subwatersheds 298 

with high standard deviations and mean erosion values in the low-to-medium erosion threshold range are 299 

identifiable (Fig. 2 c).  300 

3.2. Ecosystem service patterns across subwatershed levels. 301 

There is a clear distinction in the ecosystem service supply across the study area (Fig. 3). The northern, 302 

lower, reaches of the watershed showed the lowest values, which increased toward the south of the basin. 303 

However, at the third level, the ecosystem service supply was highly differentiated (Fig. 3 c). Increasing 304 

the scale of analysis by decreasing the pixel aggregation up to the third level revealed previously masked 305 

ecosystem service values (Fig. 3). At the first level, the maximum number of services that overlap at the 306 

basin scale was five, but it increased to six as the resolution increased. Our method of calculation also 307 

influenced this trend. Here, we used the majority rule, which, when equal numbers of cells within a 308 

subwatershed received the highest and the second highest value, assigns the lower value to the 309 

subwatershed. In any case, at the lowest scale of pixel aggregation (higher detail), it is at the third level of 310 

analysis, the most detailed segregation of ecosystem services related to erosion is observed. 311 

3.3. Hierarchy maps and patterns across subwatershed levels  312 

In searching for a scale of analysis that offers adequate spatial differentiation of the relationship between 313 

the state factor and the degradation factor, we plotted ecosystem service bundle overlaps against the 314 

average erosion rates for the three aggregation levels analyzed (Fig. 4). The first level of analysis did not 315 

highlight any subwatersheds with high erosion rates and either high or low ecosystem service values (Fig.  316 

4 a). In contrast, at the third level of analysis, the combination of ecosystem services and erosion for these 317 

thresholds was clear, highlighting the problem of generalization at the first and second levels (Fig. 4 c).  318 

3.4. Hierarchical map of management units at the second and third subwatershed levels 319 

The two case study subwatersheds, 4 and 63, provide contrasting examples that demonstrate the 320 

differences that are detectable across scales (Fig. 5). At the second level, the same spatial heterogeneity is 321 

observed for ecosystem service delivery and the associated erosion (Fig. 5 a, b). Our two selected 322 

subwatersheds show marked differences in the number of services delivered, with 0-1-2  ecosystem 323 

services being observed for subwatershed 4 associated with an erosion rate of <12 t ha-1yr-1 (Fig. 5 a) and 324 

3-4-6 services being obtained in subwatershed 63 with an erosion rate > 17 t ha-1yr-1 (Fig. 5 b). In  325 
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subwatershed 63 the priority restoration area is represented by 3 and 4 services (at levels one and two) 326 

and an erosion rate > 17 t ha-1 yr-1, corresponding to the greater part of the subwatershed (Figure 5 b). 327 

Moving from level one to level three, diversification increases (Fig. 4 c, d) and for subwatershed 4, the 328 

number of services now ranges from 0 to 3, but they are all associated with low erosion thresholds (Fig. 4 329 

c). In subwatershed 63, at level three, the number of services per subwatershed ranged from 3 to 6 and 330 

most of the subwatersheds appear to present high erosion thresholds (Fig. 4 d). 331 

4. Discussion 332 

4.1. Restoration implications from multi-scale analyses 333 

Landscapes are complex systems that require multi-scale analyses if they are to be appropriately managed 334 

and if the outcomes of interventions are to be anticipated (Hay et al. 2001). Basin-scale analyses (such as 335 

that performed in our case study area, the Martín Basin) appear to represent an appropriate extent scale 336 

for evaluating our methodology. In fact the basin is considered the optimal functional ecological unit of 337 

management or, at least, that where more intensive interactions occur between human use of the resources 338 

and ecological processes (Golley 1994), both of which determine ecosystem services. Exploring a variety 339 

of spatial scales has been recognized as necessary for understanding resource distribution (Lewis et al. 340 

1996; White and Walker 1997). In our case, different spatial scales (levels of analysis) were used to 341 

investigate the spatial locations of possible restoration actions and the dynamics of ecosystem services 342 

associated with erosion. The type of multiscale spatial analysis performed in the Martín Basin to assess 343 

ecosystem services, which has frequently been suggested (Kremen and Ostfeld 2005; Hein et al. 2006; de 344 

Groot et al. 2010), proved useful for identifying sites to be targeted for restoration (to ameliorate erosion) 345 

that simultaneously increase the provision of a selected bundle of ecosystem services. 346 

An initial top-down assessment of the Martín region was able to provide a general understanding of this 347 

area and to identify broad areas that required restoration action (Trabucchi et al. 2012a). Chu et al. (2003) 348 

described this need for obtaining a broad-scale understanding related to system dynamics so that it will be 349 

possible to explain cause-effect relationships in detail. The introduction of additional hierarchies or levels 350 

facilitates the integration of more detailed information. Our third level of analysis was found to be key in 351 

determining watershed processes and the mechanism of ecosystem degradation (Nakamura et al. 2005). 352 

As expected, reducing pixel aggregation increased spatial differentiation and detail and facilitated the 353 

location of areas for the prioritization of restoration and management actions. The second and especially, 354 
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the third level of analysis followed a bottom-up approach. This approach increased the accuracy of the 355 

identification of site-scale areas to be targeted for action and provides a defensible basis for hypothesis 356 

testing in field experiments. We explored the third level scale (highest resolution) in detail, as this scale 357 

was regarded as the most economically suitable for directing restoration actions. In our case study area, 358 

this level of analysis corresponded closely to the scale of opencast mine areas, which present a mean 359 

average area of 1.5 km2. 360 

The fine-scale analysis highlighted subwatersheds or geographical areas in the basin where restoration 361 

actions to control erosion should be prioritized hierarchically to maintain or increase the provision of 362 

ecosystem services. This would not have been possible identified if we had only undertaken a single 363 

broad level (first level) of analysis.  364 

 4.2. Developed approach for including priority restoration areas 365 

As a first step in restoration planning, a regional analysis aims at constructing an overview of ecosystem 366 

conditions to identify altered areas in need of management action (Nakamura et al. 2005). To manage a 367 

river basin efficiently, objectives must be established and restoration priorities identified (Kondolf and 368 

Micheli 1995). This understanding is essential to achieve the optimal and efficient allocation of limited 369 

resources (Palik et al. 2000; Suding 2011), especially at a broad scale, where costs can grow 370 

exponentially. In the Martín Basin, areas presenting few services and low erosion rates were found to be 371 

predominant in the flat northern areas, which have historically delivered provisioning services related to 372 

food production. In this homogeneous landscape with an oligotrophic environment (low precipitation, low 373 

soil organic matter content), restoration actions would be disproportionately expensive compared with the 374 

benefits that would be derived from such actions.   375 

We have adapted a simple risk decision support matrix previously used in watershed risk analysis (Milne 376 

and Lewis 2011) to facilitate the selection of priority areas for restoration (Fig. 6). Here, we have aligned 377 

three erosion thresholds with high and low ecosystem service supplies, developing priority cases, or 378 

scenarios. Cases 3, 4, 5 and 6 present a lower risk of losing services through erosion, and strategies aimed 379 

at improving land-use practices should be targeted to these areas. Areas classified as high priority, cases 1 380 

and 2 here, should be considered for restoration action so that ecosystem services vital for the entire basin 381 

will be reestablished and maintained. This decision support tool was derived from a data dispersion plot 382 

of erosion vs. ecosystem services (Fig. 4, right). Identifying goals for restoration and prioritizing 383 
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restoration efforts are subjective processes to some extent (Palik et al. 2000) and this approach can easily 384 

be modified to achieve different restoration targets. 385 

A hierarchical mapping approach could be used for a variety of purposes, particularly in exercises related 386 

to site location (Palik et al. 2000; Palik et al. 2003). Area selection can be further refined by coupling the 387 

generation of hierarchy maps for prioritizing subwatersheds with desired biological or physical ecological 388 

indicators (e.g., water quality, land use, erosion) (Niemi and McDonald 2004), combinations of which can 389 

be chosen to infer cause and effect relationships (such as explanatory environmental variables and 390 

responses manifested as changes in ecosystem services) (Nakamura et al. 2005). Furthermore, alternative 391 

state models, emphasizing internally reinforced states and recovery thresholds, can help in guiding 392 

restoration efforts (Suding et al. 2004). These thresholds could include types of pollution (e.g., nutrients, 393 

suspended soil, gas emissions) and general environmental disturbance thresholds (e.g., fires, floods, 394 

drought) (Groffman et al. 2006). 395 

 Ecological problems often require the extrapolation of fine-scale measurements for the analysis of broad-396 

scale phenomena (Turner et al. 1994). The generation of hierarchical maps that allow the evaluation of 397 

restoration activity across a hierarchy of scales, ranging from a broad region to an individual site (Ziemer 398 

1999), appears to be a logical and efficient way of locating key potential restoration areas. It is well 399 

recognized that restoration and landscape ecology exhibit an unexplored mutualistic relationship (Bell 400 

et al. 1997; Li et al. 2003). Our proposed framework integrates multi-scale studies, representing a key 401 

interest in landscape ecology (Turner et al. 1994; Hay et al. 2001; Brandt 2003; Burnett and Blaschke 402 

2003; Wu 2004), with the type of hierarchical prioritization used in restoration ecology (Lee and Grant 403 

1995; Palik et al. 2000; Cipollini et al. 2005; Nakamura et al. 2005; Comín et al. 2009) and the growing 404 

field of ecosystem service research (Fisher et al. 2009; Reyers et al. 2009; De Groot et al. 2010; Su et al. 405 

2012). Such a multidisciplinary approach has been recommended to make restoration plans more cost 406 

efficient (Rey Benayas et al. 2009; Bullock et al. 2011; Trabucchi, et al. 2012b) and to enhance research 407 

and the application of the three disciplines. Here, the focus of ecological restoration shifts from the site-408 

scale studies adopted in the past aimed at the reestablishment of historical abiotic conditions to promote 409 

the natural return of the vegetation (Dobson et al. 1997; Bell 1998; Prach et al. 2001) or the 410 

reestablishment and improvement of animal habitat (Huxel and Hastings 1999; Bond and Lake 2003) to 411 

broad analyses of environmental conditions at regional scales. This vision is supported by modern 412 

restoration practices, which acknowledge the importance of ecosystem patterns and processes occurring at 413 
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landscape scales (Nakamura et al. 2005). During the nested analysis, various spatial and field assessment 414 

data (fire, drought, flood) can be added as 20 m grid or layers to complement and enrich the analyses and 415 

improve the precision of prioritization according to the proposed objectives making our methodology 416 

extremely adaptable at each single case of research purpose. 417 

4.3. Investigation of possible trade-offs in restoration prioritization 418 

Ecosystem service trade-offs are defined as situations in which the provision of one service is reduced as 419 

a consequence of increased use of another ecosystem service (Bennett et al. 2009) and can arise from the 420 

differing interests of social agents (Martín-López et al. 2012). Analyzing the spatial patterns of ecosystem 421 

service bundles allows us to understand how services are distributed across a landscape, how the 422 

distributions of different services compare and where trade-offs and synergies among ecosystem services 423 

might occur (Raudsepp-Hearne et al. 2010). The presented approach highlights where potential ecosystem 424 

service improvement can be achieved through restoration and consequently, which trade-offs can be 425 

established between the services evaluated here (carbon storage, soil formation and retention, water flow 426 

regulation, surface water provisioning, eco-tourism), which contribute positively to natural resource 427 

enhancement and those that contribute negatively to natural resource conservation, which are typically 428 

provisioning services based on human extractive activities  as intensive agriculture and mining. 429 

Conventional agricultural practices degrade the soil structure and soil microbial communities due to 430 

mechanical activities such as plowing, but management practices can also protect the soil and reduce 431 

erosion and runoff (Lupwayi et al. 1998; Holland 2004). The Martín Basin, especially its northern region, 432 

displays clear evidence of trade-offs between regulatory and provisioning services, which is an issue that 433 

has been noted in many other regions of the world (Rodríguez et al. 2006; Power 2010). Management 434 

decisions often focus on the immediate provisioning of a commodity or service at the expense of this 435 

service or another ecosystem service at a distant location or in the future (Power 2010). However, win-436 

win scenarios are possible when appropriate land-use practices, such as conservation tillage, crop 437 

diversification and legume intensification, are applied (López et al. 1998; Prosperi et al. 2006; Trabucchi 438 

et al. 2012a). The potential success of integrating these approaches depends on the maintenance of 439 

ecological integrity and cohesion (Gómez-Sal and González-García 2007). Therefore, it may be possible 440 

to manage agro-ecosystems to support a diversity of ecosystem services while still maintaining or even 441 

enhancing certain provisioning services (Power 2010; Nainggolan et al. 2011). Understanding the benefits 442 
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and costs of different types of management practices is necessary to allow the establishment and 443 

maintenance of sustainable agro-ecosystems (Dale and Polasky 2007). 444 

Due to the predominant natural land cover in the southern part of the Martín Basin, the trade-offs among 445 

ecosystem services in this region are of another type and are more difficult to identify because they also 446 

exhibit many synergies and dependent ecological processes. For example, most of the ecosystem services 447 

produced in perennial vegetation areas, such as under forest cover, are related to water (e.g., purification, 448 

regulation) and these, in turn, are linked to soil (e.g., accumulation, retention) (Klijn et al. 1996; Milne 449 

and Lewis 2011; Powlson et al. 2011). While there are clear synergies, there are also potential trade-offs. 450 

For example, increasing carbon storage through the planting of fast-growing trees for CO2 accumulation 451 

(a carbon storage service linked to climate regulation) or cellulose production (a provisioning service) 452 

may reduce the surface water supply and could also result in the salinization and/or acidification of soils, 453 

with consequent decreases in ecosystem services associated with grasslands and reduced resilience of 454 

such systems (Bot and Benites 2005; Cespedes-Payret et al. 2009). 455 

Identifying trade-offs is an important step that allows policy makers to understand the long-term effects of 456 

preferring one ecosystem service over another and the consequences of focusing only on the present 457 

provision of a service, rather than the future (Rodríguez et al. 2006). 458 

4.4. Possible methodological limitations and future research needs  459 

4.4.1 Data management  460 

Spatial analysis typically involves GIS overlay analysis and geoprocessing to combine diverse sources of 461 

input layers to derive a desired map. This analysis is often complicated by differences in parent scales, 462 

years of creation, accuracy levels, modeled data and minimum mapping units for each input layer (Troy 463 

and Wilson 2006). There is no single “correct” or “optimal” scale for characterizing spatial heterogeneity, 464 

but comparisons between landscapes using pattern indices must be based on the same spatial resolution 465 

and extent. Indeed, a comprehensive empirical database containing pattern metric “scalograms” and other 466 

forms of multiple-scale information on diverse landscapes is crucial for achieving a general understanding 467 

of landscape patterns and developing spatial scaling rules (Wu 2004). The relationship between 468 

ecosystem service delivery and the regulation of environmental factors, such as erosion, may also change 469 

according to the spatial scale of analysis (Jackway and Deriche 1996). An analyst's job will often include 470 

assembling many layers with different resolutions to obtain a final map that is suitable for management 471 

purposes. Ecosystem services, such as the ecological functions and processes from which they are 472 
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derived, may change in relation to the spatial pattern of observation (Hein et al. 2006, Hurteau et al. 473 

2009), posing a major challenge for mapping these services. It is difficult to define the most appropriate 474 

scale of a study, as the resolution at which the phenomena of interest operate and are operated upon may 475 

not be immediately apparent (Rutchey and Godin 2009). Thus, in most cases, the best practice may be to 476 

adopt the highest resolution affordable (Haines-Young and Chopping 1996) but there must be a threshold 477 

for increasing the resolution (decreasing the grain size) of the analysis which once surpassed provides not 478 

so useful information as it is not related to functional aspects of the ecosystem (basin in our approach) or 479 

could result on excess of resources used in the analysis versus value of the information obtained. 480 

Furthermore, high-quality databases and new sampling approaches that support research at broader spatial 481 

and temporal scales are critical for enhancing ecological understanding and supporting further 482 

development of restoration ecology as a scientific discipline (Michener 1997). 483 

4.4.2. Statistical analysis 484 

Selecting appropriate statistical procedures and asking the right questions is vital for meeting targets 485 

(Marcot 1998). This study employed one of several available methods for aggregating spatial data to 486 

analyze ecosystem service bundles. We used the majority rule method because of our interest in 487 

identifying the major number of services present at each spatial level (Trabucchi, submitted). Although 488 

this is probably the most commonly used rule in ecological and remote sensing applications (Wu 2004), it 489 

would be interesting to compare how other different aggregation methods affect the characteristics of 490 

ecosystem service bundles. The use of rules, such as maximum, minimum and average rules and others 491 

available in GIS zonal statistical tools can have a marked effect on the obtained results (Smith et al. 492 

2007).  493 

4.4.3. Validation of the framework 494 

In the Martín Basin, some subwatersheds at the third level, classified as being of high priority for 495 

restoration (presenting erosion of > 17 t ha-1 yr-1 and >3 ecosystem services), coincide with closed mines. 496 

This finding confirmed both the appropriateness of the size of the subwatersheds generated at this level as 497 

well as the erosion and ecosystem service categorization applied for prioritizing restoration. However, 498 

future studies are needed to investigate the application of hierarchical maps at a mine scale, where these 499 

data are available, to further validate the approach presented here. 500 

5. Conclusion 501 
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A sequence of multiple-scale analyses is essential and strongly recommended for ecosystem assessment 502 

in restoration planning and spatial ecology studies (Wu et al. 2000; Nakamura et al. 2005). Ecosystem 503 

services are supplied at various spatial and temporal scales. Soil erosion is a threat to the continued 504 

productivity and flow of terrestrial and hydrological ecosystem services. The growing field of ecosystem 505 

service research must be integrated into restoration ecology, enriching prioritization exercises. The 506 

identification and classification of ecosystem services is the key objective of the regional-scale analysis 507 

presented here, in which limited resources were identified and located in a semiarid environment.  508 

Our multiple spatial-scale framework, including three levels of subwatershed analysis, allows us to 509 

identify priority areas in terms of erosion risk and ecosystem services. The fact that various spatial and 510 

field assessment data can be added as layers to complement and enrich the analyses and improve the 511 

precision of prioritization make our methodology extremely adaptable at each single case of research 512 

purpose. This framework provides a logical approach for restoration site selection as well as planning 513 

restoration activities at a basin scale, which features currently are being called for by the scientific 514 

community.  515 

 516 

 517 

518 
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Figure caption: 750 

Fig. 1 Maps of the Martín River basin showing its hydrological network, the upper (South) part and the 751 

lower (North) part of the basin and coal mine areas 752 

Fig. 2 Erosion map at first (A), second (B) and third (C) level scales. On the right of each map are plotted 753 

the relationship between mean erosion and standard deviation 754 

Fig. 3 Ecosystem services bundle map at first (A), second (B) and third (C) level scale. Figure A show 755 

subwatershed number 4(North) and 63 (South) which are highlighted by the blue circle 756 

Fig. 4 Hierarchy map at first (A), second (B) and third level scale. On the right of each map are plotted 757 

the erosion mean values against numbers of ecosystem service corresponding at each subwatershed for 758 

each level scale 759 

Fig. 5 Hierarchy map for subwatershed 4(A) and 63(B) at second level scale and for subwatershed 4(C) 760 

and 63 (D) at third level scale. On the right of each map are plotted the erosion mean values against 761 

numbers of ecosystem service corresponding at each subwatershed for each level scale 762 
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