1,904 research outputs found

    Phosphorylation of Subunit Proteins of Intermediate Filaments from Chicken Muscle and Nonmuscle Cells

    Get PDF
    The phosphorylation of the subunit proteins of intermediate (10-nm) filaments has been investigated in chicken muscle and nonmuscle cells by using a two-dimensional gel electrophoresis system. Desmin, the 50,000-dalton subunit protein of the intermediate filaments of muscle, had previously been shown to exist as two major isoelectric variants--alpha and Ăź --in smooth, skeletal, and cardiac chicken muscle. Incubation of skeletal and smooth muscle tissue with 32PO4{}3- reveals that the acidic variant, alpha -desmin, and three other desmin variants are phosphorylated in vivo and in vitro. Under the same conditions, minor components of alpha - and Ăź -tropomyosin from skeletal muscle, but not smooth muscle, are also phosphorylated. Both the phosphorylated desmin variants and the nonphosphorylated Ăź -desmin variant remain insoluble under conditions that solubilize actin and myosin filaments, but leave Z-discs and intermediate filaments insoluble. Primary cultures of embryonic chicken muscle labeled with 32PO4{}3- possess, in addition to the desmin variants described above, a major nonphosphorylated and multiple phosphorylated variants of the 52,000-dalton, fibroblast-type intermediate filament protein (IFP). Filamentous cytoskeletons, prepared from primary myogenic cultures by Triton X-100 extraction, contain actin and all of the phosphorylated and nonphosphorylated variants of both desmin and the IFP. Similarly, these proteins are the major components of the caps of aggregated 10-nm filaments isolated from the same cell cultures previously exposed to Colcemid. These results demonstrate that a nonphosphorylated and several phosphorylated variants of desmin and IFP are present in assembled structures in muscle and nonmuscle cells

    How bad is bile acid diarrhoea: an online survey of patient-reported symptoms and outcomes.

    Get PDF
    OBJECTIVES: Bile acid diarrhoea (BAD) is an underdiagnosed condition producing diarrhoea, urgency and fear of faecal incontinence. How patients experience these symptoms has not previously been studied. Bile Acid Malabsorption (BAM) Support UK was established in 2015 as a national charity with objectives including to provide details regarding how BAD affects patients, to improve earlier recognition and clinical management. DESIGN SETTING AND MAIN OUTCOME: A questionnaire was collected anonymously by BAM Support UK and the Bile Salt Malabsorption Facebook group over 4 weeks at the end of 2015. It comprised 56 questions and aimed to inform patients and clinicians about how BAD affects the respondents. RESULTS: The first 100 responses were analysed. 91% of the respondents reported a diagnosis of BAD. 58% of total respondents diagnosed following a Selenium-homocholic acid taurine scan, 69% were diagnosed by a gastroenterologist, with type 2 and 3 BAD comprising 38% and 37%, respectively, of total respondents. Symptoms had been experienced for more than 5 years before diagnosis in 44% of respondents. Following treatment, usually with bile acid sequestrants, 60% of participants reported improvement of diarrhoea and most reported their mental health has been positively impacted. Just over half of the cohort felt as though their symptoms had been dismissed during clinical consultations and 28% felt their GPs were unaware of BAD. CONCLUSIONS: BAD requires more recognition by clinicians to address the current delays in diagnosis. Treatment improves physical and mental symptoms in the majority of participants

    Independent component analysis (ICA) applied to dynamic oxygen-enhanced MRI (OE-MRI) for robust functional lung imaging at 3 T.

    Get PDF
    PURPOSE: Dynamic lung oxygen-enhanced MRI (OE-MRI) is challenging due to the presence of confounding signals and poor signal-to-noise ratio, particularly at 3 T. We have created a robust pipeline utilizing independent component analysis (ICA) to automatically extract the oxygen-induced signal change from confounding factors to improve the accuracy and sensitivity of lung OE-MRI. METHODS: Dynamic OE-MRI was performed on healthy participants using a dual-echo multi-slice spoiled gradient echo sequence at 3 T and cyclical gas delivery. ICA was applied to each echo within a thoracic mask. The ICA component relating to the oxygen-enhancement signal was automatically identified using correlation analysis. The oxygen-enhancement component was reconstructed, and the percentage signal enhancement (PSE) was calculated. The lung PSE of current smokers was compared with nonsmokers; scan-rescan repeatability, ICA pipeline repeatability, and reproducibility between two vendors were assessed. RESULTS: ICA successfully extracted a consistent oxygen-enhancement component for all participants. Lung tissue and oxygenated blood displayed the opposite oxygen-induced signal enhancements. A significant difference in PSE was observed between the lungs of current smokers and nonsmokers. The scan-rescan repeatability and the ICA pipeline repeatability were good. CONCLUSION: The developed pipeline demonstrated sensitivity to the signal enhancements of the lung tissue and oxygenated blood at 3 T. The difference in lung PSE between current smokers and nonsmokers indicates a likely sensitivity to lung function alterations that may be seen in mild pathology, supporting future use of our methods in patient studies

    Microbiomes of an oyster are shaped by metabolism and environment.

    Full text link
    Microbiomes can both influence and be influenced by metabolism, but this relationship remains unexplored for invertebrates. We examined the relationship between microbiome and metabolism in response to climate change using oysters as a model marine invertebrate. Oysters form economies and ecosystems across the globe, yet are vulnerable to climate change. Nine genetic lineages of the oyster Saccostrea glomerata were exposed to ambient and elevated temperature and PCO2 treatments. The metabolic rate (MR) and metabolic by-products of extracellular pH and CO2 were measured. The oyster-associated bacterial community in haemolymph was characterised using 16 s rRNA gene sequencing. We found a significant negative relationship between MR and bacterial richness. Bacterial community composition was also significantly influenced by MR, extracellular CO2 and extracellular pH. The effects of extracellular CO2 depended on genotype, and the effects of extracellular pH depended on CO2 and temperature treatments. Changes in MR aligned with a shift in the relative abundance of 152 Amplicon Sequencing Variants (ASVs), with 113 negatively correlated with MR. Some spirochaete ASVs showed positive relationships with MR. We have identified a clear relationship between host metabolism and the microbiome in oysters. Altering this relationship will likely have consequences for the 12 billion USD oyster economy

    Rocaglates induce gain-of-function alterations to eIF4A and eIF4F

    Get PDF
    Rocaglates are a diverse family of biologically active molecules that have gained tremendous interest in recent years due to their promising activities in pre-clinical cancer studies. As a result, this family of compounds has been significantly expanded through the development of efficient synthetic schemes. However, it is unknown whether all of the members of the rocaglate family act through similar mechanisms of action. Here, we present a comprehensive study comparing the biological activities of >200 rocaglates to better understand how the presence of different chemical entities influences their biological activities. Through this, we find that most rocaglates preferentially repress the translation of mRNAs containing purine-rich 5' leaders, but certain rocaglates lack this bias in translation repression. We also uncover an aspect of rocaglate mechanism of action in which the pool of translationally active eIF4F is diminished due to the sequestration of the complex onto RNA.P50 GM067041 - NIGMS NIH HHS; R24 GM111625 - NIGMS NIH HHS; R35 GM118173 - NIGMS NIH HHSPublished versio

    Regional and oyster microenvironmental scale heterogeneity in the Pacific oyster bacterial community.

    Full text link
    Different organs of a host represent distinct microenvironments resulting in the establishment of multiple discrete bacterial communities within a host. These discrete bacterial communities can also vary according to geographical location. For the Pacific oyster, Crassostrea gigas, the factors governing bacterial diversity and abundance of different oyster microenvironments are poorly understood. In this study, the factors shaping bacterial abundance, diversity and composition associated with the C. gigas mantle, gill, adductor muscle, and digestive gland were characterised using 16S (V3-V4) rRNA amplicon sequencing across six discrete estuaries. Both location and tissue-type, with tissue-type being the stronger determinant, were factors driving bacterial community composition. Bacterial communities from wave-dominated estuaries had similar compositions and higher bacterial abundance despite being geographically distant from one another, possibly indicating that functional estuarine morphology characteristics are a factor shaping the oyster bacterial community. Despite the bacterial community heterogeneity, examinations of the core bacterial community identified Spirochaetaceae bacteria as conserved across all sites and samples. Whereas members of the Vulcaniibacterium, Spirochaetaceae and Margulisbacteria, and Polynucleobacter were regionally conserved members of the digestive gland, gill, and mantle bacterial communities respectively. This indicates that baseline bacterial community profiles for specific locations are necessary when investigating bacterial communities in oyster health

    Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    Get PDF
    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12–C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.Research at the University of Cambridge was supported by a Marie Curie Intra-European fellowship (project # 254319) and the European Research Council (ERC starting grant 279405).This is the accepted version. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1352231014001472

    RIFAMPICIN AND ANTIBIOTIC-ASSOCIATED COLITIS

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24457/1/0000731.pd

    Randomized clinical trial to evaluate the effect of fecal microbiota transplant for initial Clostridium difficile infection in intestinal microbiome

    Get PDF
    Objective The aim of this study was to evaluate the impact of fecal donor-unrelated donor mix (FMT-FURM) transplantation as first-line therapy for C. difficile infection (CDI) in intestinal microbiome. Methods We designed an open, two-arm pilot study with oral vancomycin (250mg every 6 h for 10–14 days) or FMT-FURM as treatments for the first CDI episode in hospitalized adult patients in Hospital Universitario “Dr. Jose Eleuterio Gonzalez”. Patients were randomized by a closed envelope method in a 1: 1 ratio to either oral vancomycin or FMT-FURM. CDI resolution was considered when there was a reduction on the Bristol scale of at least 2 points, a reduction of at least 50% in the number of bowel movements, absence of fever, and resolution of abdominal pain (at least two criteria). From each patient, a fecal sample was obtained at days 0, 3, and 7 after treatment. Specimens were cultured to isolate C. difficile, and isolates were characterized by PCR. Susceptibility testing of isolates was performed using the agar dilution method. Fecal samples and FMT-FURM were analyzed by 16S rRNA sequencing. Results We included 19 patients; 10 in the vancomycin arm and 9 in the FMT-FURM arm. However, one of the patients in the vancomycin arm and two patients in the FMT-FURM arm were eliminated. Symptoms resolved in 8/9 patients (88.9%) in the vancomycin group, while symptoms resolved in 4/7 patients (57.1%) after the first FMT-FURM dose (P = 0.26) and in 5/7 patients (71.4%) after the second dose (P = 0.55). During the study, no adverse effects attributable to FMT-FURM were observed in patients. Twelve isolates were recovered, most isolates carried tcdB, tcdA, cdtA, and cdtB, with an 18-bp deletion in tcdC. All isolates were resistant to ciprofloxacin and moxifloxacin but susceptible to metronidazole, linezolid, fidaxomicin, and tetracycline. In the FMT-FURM group, the bacterial composition was dominated by Firmicutes, Bacteroidetes, and Proteobacteria at all-time points and the microbiota were remarkably stable over time. The vancomycin group showed a very different pattern of the microbial composition when comparing to the FMT-FURM group over time. Conclusion The results of this preliminary study showed that FMT-FURM for initial CDI is associated with specific bacterial communities that do not resemble the donors’ sample.Peer reviewedFinal Published versio
    • …
    corecore