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Abstract 25 

The identification of the organic composition of atmospheric aerosols is necessary to develop 26 

effective air pollution mitigation strategies. However, the majority of the organic aerosol 27 

mass is poorly characterized and its detailed analysis is a major analytical challenge. In this 28 

study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh 29 

resolution mass spectrometry (UHR-MS) and liquid chromatography ESI Quadrupole Time-30 

of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter 31 

(PM2.5) from an urban location in Cork, Ireland. Comprehensive mass spectral data 32 

evaluation approaches (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify 33 

compound classes and mass distributions of the detected species. Up to 850 elemental 34 

formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulfur 35 

containing organic species contributed up to 40% of the total identified formulae and 36 

exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at 37 

the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds 38 

in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and 39 

burning of domestic solid fuel (DSF) material. Most of the identified biogenic secondary 40 

organic aerosol (SOA) compounds were later-generation nitrogen- and sulfur -containing 41 

products, indicating that SOA composition is strongly affected by anthropogenic oxidants 42 

such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be most 43 

abundant homologs with composition reflecting primary marine origin. The results of this 44 

work demonstrate that the studied site is a very complex environment affected by a variety of 45 

anthropogenic activities and natural sources. 46 

 47 
 48 

49 
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Introduction 50 

Particulate matter (PM), also referred as atmospheric aerosols, is linked to air quality and 51 

climate. A significant fraction of PM is associated with organic carbon (OC) which can 52 

contribute up to 90% of the total aerosol mass in certain locations (Kanakidou et al., 2005). 53 

Organic aerosols can either be emitted directly (primary organic aerosol, POA) or formed 54 

through gas-to-particle conversion processes or oxidation of volatile organic compounds 55 

(VOCs) within the atmosphere (secondary organic aerosol, SOA). Various sources contribute 56 

to formation of PM and include anthropogenic sources such as use of diesel and petrol, 57 

burning of fossil fuel and biomass. Biogenic sources include VOCs emitted by vegetation. 58 

Urban environments provide very unique systems where both anthropogenic and biogenic 59 

emissions coexist resulting in the formation of extremely complex OA. For example, 60 

anthropogenic oxides of nitrogen (NOx) are shown to react with a range of BVOCs causing 61 

high regional ozone concentrations (Chameides et al., 1988) as well as being responsible for 62 

formation of organonitrates, ON (e.g., Roberts, 1990; Day et al., 2010) and nitrooxy-63 

organosulphates, NOS (Surratt et al., 2008) that are important SOA components. 64 

The identification of organic composition of aerosols remains a major analytical challenge 65 

which results in a poor understanding of aerosol sources. But only a comprehensive 66 

knowledge of aerosol sources allows developing effective air pollution mitigation strategies. 67 

Considering that OA composed of thousands of organic compounds, which cover a wide 68 

range of polarities, volatilities and masses (Goldstein and Galbally, 2007), it is difficult to 69 

find a single analytical technique for their detailed chemical analysis at the molecular level. 70 

Conventional analytical methods based on gas chromatography (GC) and liquid 71 

chromatography (LC) mass spectrometry are very effective in the identification of specific 72 

marker compounds for certain aerosol sources such as biomass burning, vehicular and 73 

cooking contributions. However, these methods are not capable of resolving the highly 74 

complex mixtures with a wide variety of physico-chemical properties leading to a very large 75 

fraction of OC being unidentified. In a previous study at Cork harbour, Ireland, conducted 76 

during summer 2008 the detected marker compounds that are characteristic for domestic solid 77 

fuel burning, fungal spores and oxidation of isoprene and α- and β-pinene could only explain 78 

20% of the OC (Kourtchev et al., 2011). Moreover, commonly used mass spectrometers, 79 

which are often used as detectors following chromatographic separation, do not have 80 

sufficient mass-resolving power to distinguish and differentiate all compounds present in the 81 

complex mixture of organic aerosol. Ultrahigh resolution mass spectrometry (UHRMS) 82 

methods have shown a great potential in solving this longstanding problem. UHRMS (i.e., 83 
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Fourier transform ion cyclotron resonance MS and Orbitrap MS) have a mass resolution 84 

power that is at least one order of magnitude higher (~100 000) than conventional MS and 85 

thus, when coupled with soft ionisation techniques, can provide a detailed molecular 86 

composition of organic aerosol (Nizkorodov et al., 2011). Nano-electrospray (nanoESI) 87 

ionisation is a promising soft ionisation technique for the analysis of OA due to its high 88 

sensitivity toward a variety of analytes and low sample volume requirements (less than 5 µL 89 

are required for nanoESI analysis compared to at least 100 µL required by conventional ESI 90 

sources). In a direct infusion analysis of complex organic mixtures with conventional ESI 91 

sources the competition for ion formation, i.e., matrix effects, is one of the primary problems. 92 

The significantly lower flow rates employed by nanoESI decrease the droplet size and 93 

increase the charge concentration on the droplet resulting in less competition for ion 94 

formation and lower ion suppression (Love et al., 2011).  95 

The objective of the current study is to apply nanoESI UHRMS to determine the molecular 96 

composition of urban PM2.5 (particles with ≤2.5µm). Aerosol samples were collected at the 97 

industrial site in Cork Ireland during summer with the aim to obtain aerosol particles of 98 

mixed biogenic and anthropogenic origin. Considering that direct infusion analysis is a 99 

qualitative technique, aerosol samples were additionally analysed by LC - ESI Quadrupole 100 

Time-of-Flight (Q-TOF) MS for the NOS and organosulphates (OS) that reflect emissions 101 

from mixed sources. The results clearly demonstrate that the overall composition of OA is 102 

dominated by anthropogenic sources such as traffic and biomass burning and that the 103 

biogenic OA is significantly affected by anthropogenic oxidants (e.g., NOx and SO2).  104 

 105 

Methodology 106 

Ambient samples 107 

Aerosol samples were collected at the Industrial Estate and Docks, Cork, Ireland (51°54′5 N, 108 

8°24′38 W). A detailed description of the site is given elsewhere (Healy et al., 2010; 109 

Kourtchev et al., 2011). Briefly, the site is located approximately 3 km east of Cork city 110 

centre with a population of about 120,000. The site is located near a shipping berth, a main 111 

road and residential areas. The vegetation that surrounds the site manly consists of shrubs and 112 

native deciduous trees.  113 

PM2.5 aerosol samples were collected on quartz fiber filters (Pallflex Tissuquartz 2500QAT-114 

UP, 150 mm diameter, preheated for 24 h at 650°C) using a High Volume (Digitel DHA-80, 115 

Switzerland) sampler with a flow rate of 500 L min−1. In total 14 samples were collected 116 

during 3-19 September 2011. Considering relatively wet and cloudy weather prevailing 117 
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during the sampling period only five separate day and night samples were collected during 3-118 

6 September, 2011. The remaining samples were collected at 24 hour (6 - 11 September, 119 

2011) and 48 hour resolution (11 - 19 September, 2011) to enable sufficient collection of 120 

aerosol mass required for LC/MS analysis. The corresponding sampling collection time and 121 

dates are shown in Table S1.  122 

 123 

Aerosol sample analysis 124 

All ambient filters were analysed for organic carbon (OC) and elemental carbon (EC) using a 125 

thermal-optical transmission (TOT) technique (Birch and Cary, 1996).  126 

For the UHRMS analysis, aerosol samples were extracted as described elsewhere (Kourtchev 127 

et al., 2013a). For each sample, a part of the quartz fibre filter (6–30 cm2), depending on OC 128 

or total aerosol loading, was extracted three times with 5 mL of methanol (Optima® grade, 129 

Fisher Scientific) under ultrasonic agitation for 30 min in ice cold water. The three extracts 130 

were combined, filtered through a 0.2 µm ISO-DiscTM PTFE filter (Supelco, Bellefonte, PA, 131 

USA) and reduced by volume to approximately 200 µL under a gentle stream of nitrogen. 132 

The final extracts were analysed using an ultrahigh resolution LTQ Orbitrap Velos mass 133 

spectrometer (Thermo Fisher, Bremen, Germany) equipped with a TriVersa Nanomate 134 

robotic nanoflow chip-based ESI source (Advion Biosciences, Ithaca NY, USA). The 135 

Orbitrap MS instrument calibration, settings and mass spectral data interpretation are 136 

described in the Supporting Information (SI). Double bond equivalent (DBE) for each 137 

individual formula was calculated using Xcalibur 2.1 (Thermo Fisher Scientific, USA) 138 

software. All molar ratios, DBE factors and chemical formulae presented in this paper refer to 139 

neutral molecules. 140 

For LC/MS analysis, a part (20 cm2) of the filter was spiked with internal recovery standard 141 

(0.6 µg camphorsulfonic acid). Aerosol samples were extracted in acetonitrile (grade) in a 142 

cooled ultrasonic bath for 20 minutes. Extracts were evaporated to dryness and reconstituted 143 

in 200 µL of 0.1 % acetic acid and 3 % acetonitrile in water. Sample extracts were analysed 144 

using a Dionex Ultimate 3000 HPLC system coupled through an ESI inlet to a Q-TOF mass 145 

spectrometer (microTOFq) (Bruker Daltonics GmbH, Bremen, Germany). The ESI-QTOF 146 

operating conditions are detailed in the SI.  147 

 148 

Meteorological data 149 

The meteorological data was obtained from the Cork Airport monitoring station. During the 150 

sampling period the wind was predominantly from west-southwesterly direction (Fig 1). The 151 
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period was accompanied by light/gentle (wind speed >2 m s-2) and strong wind (>6 m s-2) 152 

(Fig 1c) with the exception of two episodes corresponding to samples from 3 September and 153 

13-15 September, which were characterised by very calm wind conditions (≤ 2 m s-2) (Fig 1a 154 

and b).  155 

The average air temperature and relative humidity were 12.5±2.0 0C and 90.2±9.5%, 156 

respectively. The whole sampling period, with exception of 3 September and 13-15 157 

September 2011, was accompanied by at least light precipitation.  158 

 159 

Results and discussion 160 

High resolution nanoESI mass spectra of a day- and night- sample collected on 3 September 161 

and 4 September respectively are shown in Fig. 2. Throughout the sampling period very high 162 

variability between the molecular compositions was observed; however, despite this, all mass 163 

spectra appear to be mainly composed of compounds with molecular weight (MW) below 164 

400Da. Although ions above 400 Da were observed in all samples up to the measured 650 Da 165 

range, their maximum contribution to the total number of formulae was less than 7%. The 166 

majorities of the ions with masses above 300 Da were nitrogen and/or sulfur containing 167 

species or oxidised aromatic compounds as described below. Depending on the sample, 271-168 

849 elemental formulae were identified and included four subgroups: CHO, CHOS, CHON 169 

and CHONS. CHO was the most abundant subgroup in all samples (average 59.4±3.9% of 170 

the total formulae), followed by CHON (21.8±3.6%), CHOS (13.5±3.6%), and CHONS 171 

(5.2±2.4%). The highest number of molecular formulae (up to about 850) was observed 172 

during 3 September, when the wind speed fell below 2 m s-1 (Fig. 1a). Higher wind speeds 173 

were generally associated with greater dilution of aerosol as a larger volume of air passes 174 

over local emission sources.  175 

Although only 5 out of 14 samples were collected during separate day and night periods, we 176 

could clearly observe an increase in the ratio of molecular formulae containing CHON and 177 

CHONS to the total number of peaks in night time samples (average 16% and 8%, 178 

respectively) compared to the day time samples. This difference is also apparent in the mass 179 

spectra shown in Figure 2. Generally, ON are formed in polluted air during the day through 180 

reaction with NO and at night through NO3 radical-initiated reactions with alkenes (Day et 181 

al., 2010). The increased ratio of ON molecules during the night might indicate the 182 

importance of NO3 chemistry at the sampling site or more pronounced partitioning into the 183 

particle phase. Similar diurnal trend for nitrogen containing compounds was observed for the 184 

aerosol samples collected at Bakersfield, USA (O’Brien et al., 2013). It should be noted, 185 
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however, that a significantly higher fraction of nitrogen containing compounds (up to 53%, 186 

by number) was observed in the latter study. The differences could be related to specific 187 

emissions of gas phase ammonia at the Bakersfield site, which is a region known for 188 

substantial agricultural livestock emissions. In this respect, O’Brien et al. (2013) suggested 189 

that about 50% of their nitrogen containing organic compounds could have been formed 190 

through reactions of gaseous ammonia with SOA components. The increased fraction of OS 191 

during the night in the Cork samples could be explained by enhanced gas-to-particle 192 

partitioning at the cooler night-time temperatures. It has been suggested that some of the 193 

volatile species (e.g., pinanediol nitrates) need cooler temperatures to partition to the particle 194 

phase where they are subsequently sulphated (e.g., Surratt et al., 2008).  195 

The average elemental ratios for molecules containing CHO compared to the total 196 

number of formulas showed rather low variation throughout the sampling period with 197 

0.39±0.04 and 1.28±0.09 (mean value ± standard deviation) for O/C and H/C, respectively. 198 

These values are comparable to average O/C obtained using UHRMS from mixed urban-rural 199 

aerosol from Bakersfield, USA: 0.33 and 0.37 during a day and night, respectively (O’Brien 200 

et al., 2013). However, higher values were reported for urban aerosol from Cambridge, UK: 201 

0.55-0.6 (Rincón et al., 2012) and boreal forest aerosol from Hyytiälä, Finland: 0.52 202 

(Kourtchev et al., 2013a). Generally, higher O/C values are given for SOA generated in 203 

laboratory experiments from BVOCs, e.g., α-pinene, 0.42-0.55 (Putman et al., 2012), 204 

limonene, 0.5-0.6 (Kundu et al., 2012), photo-oxidation of isoprene under low-NOx 205 

conditions, 0.54 (Nguyen et al., 2011) and BVOC mixture containing α-, β-pinene, Δ3-carene 206 

and isoprene, 0.58 (Kourtchev et al., 2013b).  207 

 208 

Oxidised aromatics  209 

The Van Krevelen (VK) diagram, which shows H/C and O/C ratios for each formula in a 210 

sample, can be used to describe the overall composition or evolution of organic mixtures 211 

(Van Krevelen, 1993; Nizkorodov et al., 2011). Figure 3a shows a VK diagram for a 212 

representative sample collected on 4 September 2011. It can be clearly seen from Figure 3a 213 

that the majority of the CHO molecules in these samples have O/C<0.5 and a large range of 214 

H/C (0.5-2.0). While molecules with high H/C ratios (≥1.5) and low O/C ratios (≤0.5) (area A 215 

in Fig. 4) are generally associated with aliphatic compounds, molecules with H/C ratios 216 

(≤1.0) and O/C ratios (≤0.5) (area B in Fig. 3) typically belong to oxidised aromatic 217 

hydrocarbons (Mazzoleni et al., 2012). In addition to oxidised aromatic hydrocarbons, the 218 
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low O/C and H/C cluster (area B) include a number N and S containing molecules. Such 219 

prevalence in the aerosol samples from Cork suggests very strong anthropogenic influence at 220 

the sampling site. In contrast, only a few ions were present in the aromatic region in aerosol 221 

from the pristine boreal forest site Hyytiälä, Finland (Fig. 3b) (Kourtchev et al., 2013a). 222 

Moreover, all of the compounds in area B in the Hyytiälä sample correspond to CHON 223 

molecules. Although the sampling site at Cork is located only 400m from the shipping berth, 224 

it is highly unlikely that the shipping emissions are responsible for the presence of a large 225 

number of oxidised aromatic hydrocarbons. A previous study conducted at this site during 226 

summer 2008 using an Aerosol Time-of-Flight (ATOF) MS indicated that shipping type 227 

aerosol particles were observed in short, sharp events and contributed only 1.5% to ambient 228 

PM2.5 mass (Healy et al., 2010). On the other hand, the same study suggested that vehicular 229 

traffic is the largest source of ambient PM2.5 mass in Cork Harbour during summer time. The 230 

presence of a very large number of species with high double bond equivalents (DBE) (≥6) 231 

(Fig. 4), which shows the degree of unsaturation of a molecule, supports the inferences 232 

derived from the Van Krevelen diagram (Fig. 3). It is worth mentioning that the compounds 233 

associated with high DBE were not observed in the pristine boreal aerosol at Hyytiälä 234 

associated with the clean Atlantic air masses (Fig 4, black circles) (Kourtchev et al., 2013a).  235 

Molecular formulae with elemental ratios reflective of SOA (Wozniak et al., 2008) (area C, 236 

Figure 3a and b) were present in most of the samples. Their contribution to the total number 237 

of formulae was found to be the highest during the days with the lowest wind speed (below 2 238 

m s-1, 3 September and 13-15 September) and can possibly be explained by a lower dilution 239 

of the aerosol.  240 

 241 

Tracers for marine sources 242 

The molecular composition of the aerosol samples was examined using Kendrick 243 

Mass (KM) analysis, which is used for the identification of homologous series of compounds 244 

differing only by the number of a specific base unit (e.g., a CH2, CHO, groups). Kendrick 245 

mass of the CH2 unit is calculated by re-normalising the exact IUPAC mass (14.01565) of 246 

CH2 to 14.00000. The Kendrick Mass Defect (KMD) is calculated from the difference 247 

between the nominal mass of the molecule and the exact KM (Hughley et al., 2001). 248 

Depending on the sampling day, 95 to 97% of all peaks belong to CH2 ‘homologous’ series 249 

with >2 members. Figure 5 shows a KMD plot for the sample from 3 September 2011 (that 250 

has the highest influence from local emissions as indicated by the low wind speed) where 251 

KMD is expressed as a function of nominal KM. In this graph, all compounds with the same 252 
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base formula but different number of CH2 groups have the same KMD value and thus appear 253 

on a horizontal line. Therefore, the identification of molecular composition of one compound 254 

in the homologous series allows elucidation of the remaining peaks in the series (Nizkorodov 255 

et al., 2011). Considering the chemical complexity of the aerosol samples, the identification 256 

of all series would be very impractical and speculative; therefore, in this study we 257 

concentrated on the series that exhibited temporal variations or contained ions with very high 258 

relative intensities (R.A >50%). Although due to competitive ionisation in the ESI direct 259 

infusion analysis of the aerosol samples with a complex matrix the ion intensities do not 260 

directly reflect the concentration of the molecules in the sample, it has been suggested that 261 

semi-qualitative information on the relative concentrations between samples can still be 262 

obtained (O’Brien et al., 2013). The distinguishably largest homologous series present in the 263 

samples begins with a KM of 101.9541 corresponding to C5H10O2, and is possibly associated 264 

with a short chain unsaturated acid. This series included lauric acid (as identified by MS2 265 

analysis), which exhibited very high ion intensity (up to 60% R.A.) during most of the 266 

sampling period. Fatty acids, including lauric acid, can have multiple sources, which include 267 

marine biota (e.g., Tervahattu et al., 2002), plant waxes (e.g., Simoneit et al., 1988), and 268 

combustion of biomass material (e.g., Oros and Simoneit, 2001). The carbon number 269 

prevalence (even or odd) of the fatty acids is often used for aerosol source identification. 270 

During the sampling period, fatty acids exhibited strong even carbon number prevalence, 271 

which indicates the importance of marine sources but also included molecules with an odd 272 

carbon chain indicating their mixed origin. The site is located next to the river Lee, Lough 273 

Mahon and only 15 km from the Celtic Sea, where phytoplankton and algae are very 274 

abundant. Phytoplankton and algae are known to be an important source of fatty acids (e.g., 275 

Jeffries, 1970). The annual phytoplankton bloom in the Celtic Sea typically occurs from April 276 

to October (ICES, 2008), which coincides with the aerosol sampling period. Fatty acids can 277 

be emitted directly to the air or the dissolved material can be transferred to the air via bubble 278 

bursting processes in sea spray. In this respect, a fair amount of sea salt in ambient particles 279 

at the Cork harbour have been reported previously (Healy et al., 2010).  280 

 281 

Biomass burning markers 282 

N and/or S containing molecules had shorter homologous series compared to those 283 

associated with CHO species (Fig. 5). Similar observations were reported for urban aerosol 284 

from Cambridge, UK (Rincón et al., 2012) and boreal forest aerosol Hyytiälä, Finland 285 

(Kourtchev et al., 2013a). Rincón et al. (2012) suggested that atmospheric oxidation reactions 286 
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resulting in the incorporation of sulfur and nitrogen functional groups do not conserve 287 

homologous series but rather lead to a wide range of possible reaction products. The longest 288 

N containing series had 10 homologues beginning with C6H5NO3. Based on the MS2 analysis 289 

this molecule was tentatively identified as nitrophenol. Although nitrophenols can originate 290 

from various sources including decomposition of herbicides and insecticides and burning of 291 

coal and wood (Shafer and Schonherr, 1985) in urban environments primary motor vehicle 292 

emissions are believed to be their major source (e.g., Tremp et al., 1993). Nitrophenols (2-293 

nitrophenol and 4-nitrophenol) have been previously observed in aerosol from urban 294 

locations e.g., Rome, Italy (Cecinato et al., 2005), Mainz, Germany (Zhang et al., 2010) and 295 

were mainly attributed to traffic emissions. 296 

Another nitrogen containing series that is worth reporting included molecules with the 297 

following molecular formulae: C6H5NO4, C7H7NO4, C8H9NO4, C9H11NO4 and C10H13NO4. 298 

These species were tentatively identified as nitroaromatic compounds (NACs), e.g., 299 

nitrocatechols, nitrophenols, nitroguaiacols and nitrosalicylic acids. NACs have been recently 300 

detected in aerosol samples from urban location, e.g., Ljubljana, Slovenia (Kitanovski et al., 301 

2012) and rural environments e.g., Saxony, Germany (Iinuma et al., 2010), K-Puszta, 302 

Hungary (Claeys et al., 2012) and Hyytiälä, Finland (Kourtchev et al., 2013a) and were 303 

mainly attributed to biomass burning sources. The R.A. of these species showed a very high 304 

correlation between each other in all Cork samples (Fig. 6) supporting their common origin. 305 

Although NACs were observed throughout the whole sampling period, the highest intensities 306 

of these molecules (up to R.A. 50%) were observed during 3 September and 13-15 307 

September, which coincided with the highest OC concentration, the lowest temperature and 308 

the lowest wind speed. This trend was also apparent in the Principal Component Analysis 309 

(PCA, for method details see SI), where NACs are found to be closely correlated to each 310 

other, moderately correlated to OC and EC and anticorrelated with temperature and wind 311 

speed (Fig. 7). A previous study of PM2.5 aerosol in Cork harbor reported that biomass 312 

burning in particular, combustion of domestic solid fuel (DSF), i.e., peat, coal, wood and 313 

smokeless coal, is a substantial source of OC and PM2.5 even during summer (Kourtchev et 314 

al., 2011; Healy et al., 2010).  315 

The study by Kourtchev et al., (2011) used anhydrosugars, i.e., levoglucosan, 316 

mannosan, galactosan and 1,6-anhydro-β-D-glucofuranose as marker compounds to estimate 317 

the contribution of DSF burning. These anhydrosugars, structural isomers with a molecular 318 

formula C6H10O5, were also observed in all examined samples at m/z 161.0456. Although, an 319 

ion at m/z 161.0456 exhibited the highest intensity (R.A. 20-25%) during 3 September 320 
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(sample TQ1) and 13-15 September (TQ12), it is only moderately correlated with the NACs 321 

as indicated in the bidimentional plane defined by the first two principal components of the 322 

PCA (Fig. 7). Competitive ionisation or ion suppression due to the presence of other matrix 323 

compounds could be a reason for these observations. Despite this, the fairly high abundance 324 

of the ion corresponding to the anhydrosugars with molecular formula C6H10O5 suggests that 325 

DSF burning is a major source of aerosol in Cork harbor. Similarly to the NACs, the 326 

anhydrosugars (C6H10O5) were moderately correlated to OC and EC and anticorrelated with 327 

temperature and wind speed (Fig. 7). In addition, the PCA clearly supports the unique 328 

composition of the two samples from 3 and 13-15  September as they form a cluster separate 329 

from all other samples.  330 

 331 

Anthropogenic aging of biogenic SOA 332 

 Another very intensive ion (R.A. up to 85%) at m/z 294.0654 observed in almost all 333 

samples corresponded to a species with molecular formula C10H17NSO7. This molecule has 334 

been previously identified as α-/β-pinene related NOS MW295 (Surratt et al., 2009; Gómez-335 

González et al., 2011) and was observed in various sampling locations including a Belgian 336 

forest site at Brasschaat that is severely impacted by urban pollution (Gómez-González et al., 337 

2011), rural background sites at Birkenes (Norway), Lille Valby  (Denmark) and Vavihill 338 

(Sweden) (Yttri et al., 2011) and Hyytiälä (Finland) (Yttri et al., 2011; Kourtchev et al, 339 

2013a). The OS and NOS are generally formed through heterogenous reactions of BVOCs 340 

involving acidic sulfur aerosol (Surratt et al., 2008), which is primarily derived from 341 

anthropogenic sources and therefore reflect anthropogenic influences at the sampling site. In 342 

general, N and S containing compounds have very high ionisation efficiencies, and thus the 343 

high abundance of the corresponding ions in the samples could be explained not only by 344 

relatively high concentration of the compound but also by their favorable ionisation. LC/MS 345 

analyses confirmed that the NOS MW295 was one of the major species in the Cork harbor 346 

samples. Depending on the sampling day the concentration of NOS MW295 as determined by 347 

LC/MS varied between 0.06 and 2.08 ng m-3 with its maximum concentration peaking at 348 

night-time. These values are comparable to concentration ranges (0.6-3.6 ng m-3) for PM2.5 349 

aerosol from a Belgian forest site (Gómez-González et al., 2011). The later study also 350 

observed night-time concentration increase of the NOS MW295 and linked it to enhanced 351 

gas-to-particle partitioning at the cooler night-time temperatures or formation through night-352 

time chemistry with NOx. 3-methyl-1,2,3-butanetricarboxylic (3-MBTCA), another α- and β-353 

pinene oxidation product (Szmigieslki et al., 2007), was detected in all studied samples in the 354 
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concentration range 0.03-0.28 ng m-3. 3-MBTCA has been previously identified as an OH-355 

initiated oxidation product of pinonic acid and was proposed as a suitable tracer for the 356 

chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals (Müller et al., 357 

2012).  358 

Considering that increased concentration of α- and β-pinene derived NOS MW 295 was 359 

observed during the time when the wind speed was the lowest (≤2 m s-1) we can suggest that 360 

the BVOC precursor responsible for the formation of this compound was rapidly oxidised by 361 

the anthropohgenic oxidants (e.g., NOx). This is also confirmed by a presence of 3-MBTCA 362 

and absence of the first generation α - and β-pinene oxidation products (e.g., pinic acid and 363 

pinonic acid) in the samples. However, the lower air dilution during the days with the lowest 364 

wind speed could also be responsible for these observations. 365 

Another important BVOC derived NOS MW297 with the molecular formula C9H15NO8S was 366 

detected in the Cork samples by both direct infusion UHRMS and LC/MS analyses. This 367 

molecule was previously identified as a limonene oxidation product (Surratt et al., 2008) and 368 

was detected in various rural background sites (Yttri et al., 2011). The observed 369 

concentrations of limonene derived NOS (0.2 ng m-3) in Cork site was lower than those 370 

reported previously for rural background sites (0.5-1.5 ng m-3) (Yttri et al., 2011). The 371 

difference can be explained by the type of vegetation and the density of the limonene 372 

emitting species in Cork.  373 

Among the identified OS, the presence of C5H12SO7 in the Cork samples is worth reporting as 374 

it is considered to be a tracer for isoprene, which is an important BVOC emitted by terrestrial 375 

vegetation. This tracer compound was previously identified as C5 organosulphate MW 216 376 

and was suggested to be derived from isoprene epoxydiol isomers (Surratt et al., 2010). 377 

A complete list of OS and NOS detected by direct infusion nanoESI UHRMS in one sample 378 

associated with local emissions is shown in the Table S2. Although the alternatively applied 379 

LC/MS method was able to detect (above detection limit) only two OS and two NOS 380 

compared to (22-119 formulae) and (9-89 formulae), respectively identified by the direct 381 

infusion nanoESI UHRMS, it provides invaluable quantitative information on the 382 

contribution of specific OS and NOS in the aerosol mass.  383 

 384 

Conclusions 385 

In this study we applied direct infusion nanoESI UHR-MS and LC/ESI-(Q-TOF) MS for the 386 

analysis of the organic fraction of 14 summer PM2.5 samples from an urban location in Cork, 387 

Ireland. Up to 850 elemental formulae were identified with direct infusion analysis. The most 388 
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predominant groups of identified compounds included molecules with CHO, CHON and 389 

CHOS. The occurrence and abundance of ions corresponding to nitrogen containing species 390 

(likely ON) exhibited very strong night-time prevalence suggesting importance of NO3 391 

chemistry at the site.  392 

Van Krevelen and DBE distributions along with relatively low elemental O/C and H/C ratios 393 

indicated the presence of a large number of oxidised (poly-)aromatic compounds in the 394 

samples, suggesting that the site is strongly influenced by traffic emissions. The 395 

distinguishable homologous series in the KMD diagram contained saturated and unsaturated 396 

fatty acid characteristic for primary marine emissions. The longest nitrogen containing series 397 

included NACs, e.g., nitrocatechols, nitrophenols, nitroguaiacols and nitrosalicylic acids 398 

derived from burning of DSF material. Most of the biogenic secondary organic aerosol 399 

(SOA) compounds were found to later-generation SOA components such as NOS and OS. 400 

The absence of major ‘fresh’ biogenic SOA components, such as pinic and cis-pinonic acid, 401 

which are precursors for some of the identified OS and NOS, suggests a strong influence of 402 

anthropogenic pollutants such as NOx and SO2 at the site, which might have quickly further 403 

oxidised these first-generation SOA components. This conclusion is supported by the 404 

presence of 3-MBTCA, a tracer for the aged biogenic secondary SOA, which  was present in 405 

all samples.  406 

The results of this work demonstrate that the studied site is a very complex environment 407 

dominated by a variety of industrial and domestic activities. Primary and secondary natural 408 

sources of organic aerosol mass were also identified and it was suggested that anthropogenic 409 

gaseous oxidants efficiently and significantly affect the composition of biogenic SOA at this 410 

location resulting in a large number of nitrogen- and sulfur-containing organic compounds.  411 
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Figures and captions:  541 

 542 

Figure 1. Wind roses for (a) 3 September, 2011; (b) 13-15 September, 2011 and (c) the rest of 543 
the sampling period for 4-13 September and 15-19 September, 2011. The colour represent the 544 
wind speed: blue > 6 m s-2 (strong wind); green >2 m s-2 (light/gentle wind) and red < 2 m s-2 545 
(calm wind conditions). 546 

 547 

Figure 2. Direct infusion negative-nanoESI UHRMS blank corrected mass spectra obtained 548 
for the representative day (in red) and night (in black) organic aerosol samples from Cork, 549 
Ireland.  550 
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 551 

Figure 3. Van Krevelen (VK) diagrams for all detected ions in the aerosol samples from (a) 552 
an urban environment at Cork, Ireland, and (b) a remote boreal forest, Hyytiälä, Finland; 553 
Areas ‘A’, ‘B’ and ‘C’ indicate differences in the number of ions tentatively attributed to 554 
aliphatic, aromatic and secondary organic aerosol (SOA)  species, respectively. All ions in 555 
the area ‘B’ of the boreal forest sample correspond to CHON molecules. The corresponding 556 
VK for the Hyytiälä’s sample in Kourtchev et al. (2013a) only showed CHO and CHOS 557 
molecules.  558 

 559 

 560 

Figure 4. Double bond equivalents (DBE) vs. mass to charge ratio (m/z) for CHO molecules 561 
in the samples associated with local emissions from an urban site in Cork, Ireland collected 562 
on 3 September, 2011 (red triangles) and a boreal forest site at Hyytiälä, Finland, collected on 563 
17 August 2011 (black circles).  564 
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 565 

Figure 5. CH2-Kendrick mass defect (KMD) vs. nominal Kendrick mass (KM) for CHO 566 
(black squares), CHON (red triangles), CHOS (green circles) and CHONS (blue diamonds) 567 
species in the aerosol sample from Cork, Ireland, associated with local emissions (from 3 568 
September, 2011).  569 

 570 

Figure 6. Correlation of relative intensities (RA) for nitroaromatic compounds (NACs) during 571 
the sampling period (3-17 September 2011) in Cork samples. The insert ‘A’ shows the strong 572 
correlation of these species even at low RA.  573 

 574 

 575 
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 576 

Figure 7. Scores (a) and loadings (b) of the first two principal components obtained from the 577 
principal components analysis and explaining the 79.07% of variance of the dataset. Red, 578 
blue and green ellipses show three distinct clusters in the scores plot (a). Vectors in blue and 579 
in red represent the active and supplementary variables in the loadings plot (b). Abbreviation 580 
FA corresponds to the ratio of even to odd carbon number of the detected fatty acids.  581 
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