259 research outputs found

    Capturing the experiences of feminist educators

    Get PDF
    This thesis seeks to capture the lived experiences of contemporary feminist educators, with particular emphasis on their influences, activism, praxis and challenges. There is particular interest in their styles, approaches and pedagogical practices; alongside the formal and informal spaces in which they operate. This study is primarily based on in-depth interviews, conducted with four feminist educators and applies secondary research; the overall methodology is feminist. The primary objective was to uncover subjugate knowledge regarding feminist praxis; in order to contribute to the wider field of feminist education. The main finding implied that a combination of their individual passions and strong ethical ethos underpinned their praxis in everything, including feminist education. The thesis argues that it is through this combination, these women have come to negotiate the space between informal and formal learning spaces. Subsequently, the researcher offers a hypothesis, accepting firstly that praxis is central to feminist principles or an engaged pedagogy; the core providing strength and stability like a tree trunk. The individual passion and value system is aligned with the grounding roots or principles, nourishing their praxis. The branches and leaves become symbolic of the ingredients essential in bringing that trunk and roots into the learning space; those ingredients are identified as the ‘P’s of feminist praxis, which include: process, passion, participation, political, prioritising women’s voices, personal engagement, power and personal learning. It offers a comprehensive description of a holistic engaged praxis and powerful potential for practice

    Public Appointments: Options for Reform

    Get PDF

    Antimicrobial antagonists against food pathogens; a bacteriocin perspective

    Get PDF
    peer-reviewedEfforts are continuing to find novel bacteriocins with enhanced specificity and potency. Traditional plating techniques are still being used for bacteriocin screening studies, however, the availability of ever more bacterial genome sequences and the use of in silico gene mining tools have revealed novel bacteriocin gene clusters that would otherwise have been overlooked. Furthermore, synthetic biology and bioengineering-based approaches are allowing scientists to harness existing and novel bacteriocin gene clusters through expression in different hosts and by enhancing functionalities. The same principles apply to bacteriocin producing probiotic cultures and their application to control pathogens in the gut. We can expect that the recent developments on bacteriocins from Lactic Acid Bacteria (LAB) described here will contribute greatly to increased commercialisation of bacteriocins in food systems.This work was funded by the Alimentary Pharmabiotic Centre, a research centre funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan. The authors and their work were supported by SFI (grant no. 12/RC/2273

    Mapping the Golden Circle

    Get PDF

    Profiling employees online: shifting public-private boundaries in organisational life

    Get PDF
    Profiling involves the collection and use of online information about prospective and current employees to evaluate their fitness for and in the job. Workplace and legal studies suggest an expanded use of profiling and significant legal/professional implications for HRM practitioners, yet scant attention has been afforded to the boundaries of such practices. In this study, profiling is framed as a terrain on which employees and employers assert asymmetrical interests. Using survey data from large samples in Australia and the UK, the study investigates the prevalence and outcomes of profiling; the extent that employees assert a right to privacy versus employer rights to engage in profiling; the extent that organisations codify profiling practices; and employee responses in protecting online information. The findings contribute to a small and emerging body of evidence addressing how social media conduct at work is reconstituting and reshaping the boundaries between public and private spheres. Keywords: profiling; public-private boundaries; social media at work; employee privac

    Intensive Mutagenesis of the Nisin Hinge Leads to the Rational Design of Enhanced Derivatives

    Get PDF
    peer-reviewedNisin A is the most extensively studied lantibiotic and has been used as a preservative by the food industry since 1953. This 34 amino acid peptide contains three dehydrated amino acids and five thioether rings. These rings, resulting from one lanthionine and four methyllanthionine bridges, confer the peptide with its unique structure. Nisin A has two mechanisms of action, with the N-terminal domain of the peptide inhibiting cell wall synthesis through lipid II binding and the C-terminal domain responsible for pore-formation. The focus of this study is the three amino acid ‘hinge’ region (N 20, M 21 and K 22) which separates these two domains and allows for conformational flexibility. As all lantibiotics are gene encoded, novel variants can be generated through manipulation of the corresponding gene. A number of derivatives in which the hinge region was altered have previously been shown to possess enhanced antimicrobial activity. Here we take this approach further by employing simultaneous, indiscriminate site-saturation mutagenesis of all three hinge residues to create a novel bank of nisin derivative producers. Screening of this bank revealed that producers of peptides with hinge regions consisting of AAK, NAI and SLS displayed enhanced bioactivity against a variety of targets. These and other results suggested a preference for small, chiral amino acids within the hinge region, leading to the design and creation of producers of peptides with hinges consisting of AAA and SAA. These producers, and the corresponding peptides, exhibited enhanced bioactivity against Lactococcus lactis HP, Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and Staphylococcus aureus RF122 and thus represent the first example of nisin derivatives that possess enhanced activity as a consequence of rational design.This work was financed by a grant from the Irish Department of Agriculture, Food and the Marine through the Food Institutional Research Measure (08/RD/C/691) and with Science Foundation Investigator award (10/IN.1/B3027)

    Saturation Mutagenesis of Lysine 12 Leads to the Identification of Derivatives of Nisin A with Enhanced Antimicrobial Activity

    Get PDF
    peer-reviewedIt is becoming increasingly apparent that innovations from the “golden age” of antibiotics are becoming ineffective, resulting in a pressing need for novel therapeutics. The bacteriocin family of antimicrobial peptides has attracted much attention in recent years as a source of potential alternatives. The most intensively studied bacteriocin is nisin, a broad spectrum lantibiotic that inhibits Gram-positive bacteria including important food pathogens and clinically relevant antibiotic resistant bacteria. Nisin is gene-encoded and, as such, is amenable to peptide bioengineering, facilitating the generation of novel derivatives that can be screened for desirable properties. It was to this end that we used a site-saturation mutagenesis approach to create a bank of producers of nisin A derivatives that differ with respect to the identity of residue 12 (normally lysine; K12). A number of these producers exhibited enhanced bioactivity and the nisin A K12A producer was deemed of greatest interest. Subsequent investigations with the purified antimicrobial highlighted the enhanced specific activity of this modified nisin against representative target strains from the genera Streptococcus, Bacillus, Lactococcus, Enterococcus and Staphylococcus.This work was supported by the Irish Government under the National Development Plan; by the Irish Research Council for Science Engineering and Technology (IRCSET); by Enterprise Ireland; and by Science Foundation Ireland (SFI), through the Alimentary Pharmabiotic Centre (APC) at University College Cork, Ireland, which is supported by the SFI-funded Centre for Science, Engineering and Technology (SFI-CSET) and provided P.D.C., C.H. and R.P.R. with SFI Principal Investigator funding

    Efficacy of nisin A and nisin V semi-purified preparations alone and in combination with plant essential oils to control Listeria monocytogenes

    Get PDF
    peer-reviewedThe foodborne pathogenic bacterium Listeria is known for relatively low morbidity and high mortality rates reaching up to 25-30%. Listeria is a hardy organism and its control in foods represents a significant challenge. Many naturally occurring compounds, including the bacteriocin nisin and a number of plant essential oils, have been widely studied and are reported to be effective as antimicrobial agents against spoilage and pathogenic microorganisms. The aim of this study was to investigate the ability of semi-purified preparations (spp) containing either nisin A or an enhanced bioengineered derivative nisin V, alone and in combination with low concentrations of the essential oils thymol, carvacrol and trans-cinnamaldehyde, to control L. monocytogenes in both laboratory media and model food systems. Combinations of nisin V-containing spp (25 μg/ml) with thymol (0.02%), carvacrol (0.02%) or cinnamaldehyde (0.02%) produced a significantly longer lag phase than any of the essential oil/nisin A combinations. In addition, the log reduction in cell counts achieved by the nisin V + carvacrol or nisin V + cinnamaldehyde combinations was twice that of the equivalent nisin A + essential oil treatment. Significantly, this enhanced activity was validated in model food systems against L. monocytogenes strains of food origin. We conclude that the fermentate form of nisin V in combination with carvacrol and cinnamaldehyde offers significant advantages as a novel, natural and effective means to enhance food safety by inhibiting foodborne pathogens such as L. monocytogenes.This work was supported by the Irish Government under the National Development Plan, through Science Foundation Ireland Investigator awards to C.H. and R.P.R. (10/IN.1/B3027), and C.H., R.P.R. and P.D.C. (06/IN.1/B98)

    Lactococcus lactis subsp. lactis as a natural anti-listerial agent in the mushroom industry

    Get PDF
    peer-reviewedMushroom growth substrates from different commercial producers of mushrooms (Agaricus bisporus) were screened for the presence of bacteria with potential for use as biocontrol agents for controlling Listeria monocytogenes in the mushroom production environment. Eight anti-listerial strains were isolated from different sources and all were identified using 16s rRNA gene sequencing as Lactococcus lactis subsp. lactis. Whole-genome sequencing of the Lc. lactis isolates indicated that strains from different sites and substrate types were highly similar. Colony MALDI-TOF mass spectrometry found that these strains were Nisin Z producers but inhibitory activity was highly influenced by the incubation conditions and was strain dependant. The biofilm forming ability of these strains was tested using a crystal violet assay and all were found to be strong biofilm formers. Growth of Lc. lactis subsp. lactis using mixed-biofilm conditions with L. monocytogenes on stainless steel resulted in a 4-log reduction of L. monocytogenes cell numbers. Additional sampling of mushroom producers showed that these anti-listerial Lc. lactis strains are commonly present in the mushroom production environment. Lc. lactis has a generally regarded as safe (GRAS) status and therefore has potential for use as an environmentally benign solution to control L. monocytogenes in order to prevent product contamination and to enhance consumer confidence in the mushroom industry

    A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius

    Get PDF
    peer-reviewedAntibiotic resistance and the shortage of novel antimicrobials are among the biggest challenges facing society. One of the major factors contributing to resistance is the use of frontline clinical antibiotics in veterinary practice. In order to properly manage dwindling antibiotic resources, we must identify antimicrobials that are specifically targeted to veterinary applications. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many gram-positive bacteria, including human and animal pathogens such as Staphylococcus, Bacillus, Listeria, and Clostridium. Although not currently used in human medicine, nisin is already employed commercially as an anti-mastitis product in the veterinary field. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) and also against staphylococci and streptococci associated with bovine mastitis. However, newly emerging pathogens such as methicillin resistant Staphylococcus pseudintermedius (MRSP) pose a significant threat in terms of veterinary health and as a reservoir for antibiotic resistance determinants. In this study we created a nisin derivative with enhanced antimicrobial activity against S. pseudintermedius. In addition, the novel nisin derivative exhibits an enhanced ability to impair biofilm formation and to reduce the density of established biofilms. The activities of this peptide represent a significant improvement over that of the wild-type nisin peptide and merit further investigation with a view to their use to treat S. pseudintermedius infections.This work was supported by the Irish Government under the National Development Plan, through Science Foundation Ireland Investigator awards (10/IN.1/B3027 (http://www.sfi.ie). DF would like to acknowledge receipt of a Society for Applied Microbiology (http://www.sfam.org.uk) Students into Work Grant for FL
    corecore