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Summary 

 

The foodborne pathogenic bacterium Listeria is known for relatively low morbidity and high 

mortality rates reaching up to 25-30%. Listeria is a hardy organism and its control in foods 

represents a significant challenge. Many naturally occurring compounds, including the 

bacteriocin nisin and a number of plant essential oils, have been widely studied and are 

reported to be effective as antimicrobial agents against spoilage and pathogenic 

microorganisms. The aim of this study was to investigate the ability of semi-purified 

preparations (spp) containing either nisin A or an enhanced bioengineered derivative nisin V, 

alone and in combination with low concentrations of the essential oils thymol, carvacrol and 

trans-cinnamaldehyde, to control L. monocytogenes in both laboratory media and model 

food systems. Combinations of nisin V-containing spp (25 µg/ml) with thymol (0.02%), 

carvacrol (0.02%) or cinnamaldehyde (0.02%) produced a significantly longer lag phase than 

any of the essential oil/nisin A combinations. In addition, the log reduction in cell counts 

achieved by the nisin V + carvacrol or nisin V + cinnamaldehyde combinations was twice 

that of the equivalent nisin A + essential oil treatment. Significantly, this enhanced activity 

was validated in model food systems against L. monocytogenes strains of food origin. We 

conclude that the fermentate form of nisin V in combination with carvacrol and 

cinnamaldehyde offers significant advantages as a novel, natural and effective means to 

enhance food safety by inhibiting foodborne pathogens such as L. monocytogenes. 

 

 

 



Introduction 

The growing consumer demand for food products that are minimally processed and free of 

chemical preservatives presents a difficult challenge for food processors. Consequently, 

there has been a focus on the application of naturally produced antimicrobial compounds as 

a more acceptable means to control the growth of undesirable microorganisms in food (1, 2).  

Bacteriocins (ribosomally-produced, small, heat-stable peptides that are active against other 

bacteria) derived from generally regarded as safe organisms provide one potential solution. 

However, only two bacteriocins have been commercialized to any extent. These are nisin, 

produced by Lactococcus lactis and pediocin PA-1, produced by Pediococcus acidilactici (3, 

4). Of these, nisin is used in a wide variety of dairy and non-dairy products including cream 

and cheese products, soups, liquid egg, mayonnaises, salad dressings, tomato products and 

beer (5).  Nisin A exhibits antibacterial activity against a wide range of Gram positive 

bacteria, including food-borne pathogens such as staphylococci, bacilli, clostridia and 

Listeria (6, 7).  Indeed, the success of nisin A from discovery (8) through to regulatory 

approval and finally to commercial application has spurred researchers to exploit its gene-

encoded nature and to attempt to ‘bioengineer’ variants with altered biological, chemical and 

physical properties. Over the last decade several studies have described the discovery of 

new nisin derivatives with enhanced activity against a range of food-related pathogenic 

micro-organisms (9, 10) Of these, nisin M21V, subsequently designated nisin V, was 

noteworthy by virtue of its enhanced antimicrobial activity against a wide range of targets, 

including medically significant pathogens and food-borne pathogens such as B. cereus and 

L. monocytogenes (10, 11). Significantly, this enhanced activity against L. monocytogenes 

was also apparent in a food setting (11).  The increasing trend towards minimally processed 

and ready to eat (RTE) refrigerated foods means that more robust strategies are required to 

control the growth and survival of Listeria monocytogenes. Indeed, recent strategies for 

controlling spoilage and pathogenic microorganisms lean towards hurdle technology, 

whereby different preservation methods are combined to inhibit microbial growth and 



improve food safety.  To this end, numerous studies have been carried out highlighting the 

potential of nisin in conjunction with other hurdle technologies including organic acids, salt, 

EDTA, heat, high hydrostatic pressure, modified atmosphere packaging and pulsed electric 

fields (for reviews see 12, 13). Similarly, aromatic plant oils have been widely studied due to 

their antimicrobial activities and have found various applications including the preservation of 

raw and processed foods (14), pharmaceuticals (15) and as natural therapies. Notably, 

several studies have demonstrated the synergistic activities of nisin and essential oil 

combinations including thymol (16), carvacrol (17, 18), and cinnamaldehyde (19-21), 

amongst others.  

In this study we created a stable nisin V producer of an industrial nisin production strain to 

enable the generation of fermentates of nisin V for comparative studies with its nisin A 

equivalent.  We examine their solo activity, as well as in combination with the essential oils 

thymol, carvacrol and trans-cinnamaldehyde, in terms of their ability to control L. 

monocytogenes strains of food-borne origin in laboratory media and in model food systems. 

Notably, we demonstrate that the previously observed enhanced specific activity of purified 

nisin V over nisin A against L. monocytogenes is retained by the fermentate versions in both 

microbiological media and in food matrices. In addition, the essential oil and nisin V 

combinations display significantly increased efficacy compared to either compound alone or 

to the Nisin A + essential oil combinations. 

 

 

 

 

 

 



Materials and Methods 

Bacterial Strains and Growth Conditions 

L. lactis strains were grown in M17 broth supplemented with 0.5% glucose (GM17) or GM17 

agar at 30˚C. E. coli was grown in Luria-Bertani broth with vigorous shaking or agar at 37˚C. 

Listeria strains were grown in Brain Heart Infusion (BHI) or BHI agar at 37˚C. Antibiotics 

were used where indicated at the following concentrations: Chloramphenicol at 10 and 20 μg 

ml-1, respectively for L. lactis and E. coli.  Erythromycin was used at 150 μg/ml and 5 μg/ml 

for E. coli and L. lactis, respectively. X-gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside) was used at a concentration of 40 μg/ml. Stock concentrations of Thymol 

(Sigma) at 50 mg/ml was made up in 50% ethanol and stored at -20ºC. Caravcrol (Sigma) 

was diluted from stock (0.976 g/ml) in 100% ethanol to the desired concentration. Trans-

cinnamaldehyde (Sigma) was diluted from stock (1.05 g/ml) in 100% ethanol to the desired 

concentration. In all experiments the concentration of ethanol did not exceed 2% (vol/vol). 

Conversion of an industrial Nisin producing strain to a Nisin V producer  

Mutagenesis of the nisA gene was carried out as described previously (11). Briefly, to 

introduce the desired mutations within the hinge-region of the nisA gene, the plasmid pDF06 

(a 774 bp product encompassing approx. 300 bp either side of the nisA gene cloned into the 

vector pORI280 ) was amplified with the QuickChange system (Stratagene) using the 

primers nisinVFor 5’GAGCTCTGATGGGTTGTAACGTTAAAACAGCAACTTGTCATT3’ and 

nisinVRev 5’CAATGACAAGTTGCTGTTTTAACGTTACAACCCATCAGAGCT3’ (codon 

changes underlined). The resulting PCR products were transformed into E. coli EC101 

(RepA+). To detect altered pORI280-nisA transformants, candidates were screened by PCR 

using a specific ‘check’ primer (nisinV check 5’GCTCTGATGGGTTGTAACG) designed to 

amplify mutated plasmid template only and a reverse primer oDF106 

5’TAGAATTCAACAGACCAGCATTA3’. Plasmids from positive candidates were sequenced 

(Sourcebioscience UK) using the primers pORI280FOR 5’CTCGTTCATTATAACCCTC3’ 

and pORI280REV 5’CGCTTCCTTTCCCCCCAT3’ to verify the deliberate mutation and to 



confirm no other changes had been introduced. pDF08 (pORI280-nisM21V) was then 

introduced into L. lactis DGCC 10042 pVE6007 by electroporation (22)  and transformants 

were selected by growth on GM17-Ery-X-gal plates at 30°C. Integration of pDF08 by single 

crossover recombination and curing of the temperature sensitive plasmid pVe6007 was 

achieved by growth at 37°C in GM17-Ery broth and plating on GM17-Ery-X-gal agar at the 

same temperature. Selected colonies were checked for their inability to grow on GM17-Cm 

agar at 30°C and then subcultured in GM17 at 37°C. Each subculture was spread on GM17-

X-gal plates to identify candidates where pORI280 had excised and was lost (LacZ-) due to a 

second crossover event. Mutant and wild-type revertants were distinguished by deferred 

antagonism assays. Bac+ candidates were analysed by Mass Spectrometry to verify 

production of the mutant Nisin peptide.  

Mass Spectrometry 

For Colony Mass Spectrometry (CMS) bacteria were collected with sterile plastic loops and 

mixed with 50 µl of 70% isopropanol adjusted to pH 2 with HCl. The suspension was 

vortexed, the cells spun down in a benchtop centrifuge at 14,000 r.p.m. for 2 min, and the 

supernatant was removed for analysis. Mass Spectrometry in all cases was performed with 

an Axima CFR plus MALDI TOF mass spectrometer (Shimadzu Biotech, Manchester, UK). A 

0.5µl aliquot of matrix solution (alpha-cyano-4-hydroxy cinnamic acid (CHCA), 10 mg ml-1 in 

50% acetonitrile-0.1% (v/v) trifluoroacetic acid) was placed onto the target and left for 1-2 

min before being removed. The residual solution was then air dried and the sample solution 

(resuspended lyophilised powder or CMS supernatant) was positioned onto the precoated 

sample spot. Matrix solution (0.5 µl) was added to the sample and allowed to air-dry. The 

sample was subsequently analysed in positive-ion reflectron mode. 

 

 

 



Generation of Nisin A- and Nisin V-containing fermentate. 

Laboratory scale fermentations were carried out by DuPont (Beaminster, UK) using the nisin 

producing strain L. lactis DGCC10042 and the newly created nisin V producing strain L. 

lactis DGCC 10042::nisV. Analysis of the resultant nisin A and nisin V containing spp 

revealed equivalent quantities of nisin peptides by HPLC (81.9 mg/gram and 82.6 mg/gram 

respectively). This is in agreement with previous analysis relating to production levels of 

bioengineered nisin derivatives (10). 

Minimum Inhibitory Concentration assays 

Minimum inhibitory concentration (MIC) determinations were carried out in triplicate in 96 

well microtitre plates. 96 well microtitre plates were pre-treated with bovine serum albumin 

(BSA) prior to addition of the nisin fermentates. Briefly, to each well of the microtitre plate 

200 μL of phosphate buffered saline (PBS) containing 1% (w/v) bovine serum albumin 

(PBS/BSA) was added and incubated at 37°C for 30 min. The wells were washed with 200 

μL PBS and allowed to dry. Target strains were grown overnight in the appropriate 

conditions and medium, subcultured into fresh broth and allowed to grow to an OD600 of 

~0.5, diluted to a final concentration of 105 cfu ml−1 in a volume of 0.2 ml. The nisin spp were 

resuspended in BHI broth to a stock concentration of 10 mg/ml. Wild type nisin and nisin V 

peptides were adjusted to a 1.25 mg/ml starting concentration and 2-fold serial dilutions of 

each peptide were made in 96 well plates for a total of 10 dilutions. The target strain was 

then added and after incubation for 16 h at 37°C the MIC was read as the lowest peptide 

concentration causing inhibition of visible growth.                                                                                                                                                                                                                                                                                                                                                                                                                                 

MICs were carried as above for the three essential oils against selected Listeria strains with 

some minor modifications as the 96 well plates did not require treatment with BSA. Target 

strains were grown overnight, subcultured and added at a final concentration of 105 cfu ml−1 

in a volume of 0.2 ml. The various oils were diluted accordingly and added to 0.2 mls at a 

starting concentration of 2.5 mg/ml, 2-fold serial dilutions were subsequently carried out and 



the target strain was then added. Following incubation for 16 h at 37°C the MIC was read as 

the lowest peptide concentration causing inhibition of visible growth. 

Growth/Kill experiments 

For growth experiments, overnight cultures were transferred (107 cfu ml−1 in a volume of 

1.0 ml.) into BHI supplemented with 25 µg/ml of nisin fermentates in combination with one of 

the essential oils being tested ie. thymol, carvacrol or cinnamaldehyde with concentrations 

ranging from 152 µg/ml - 304 µg/ml. 0.2 mls was subsequently transferred to 96 well 

microtitre plates (Sarstedt). Cell growth was measured spectrophotometrically over 24-h 

periods by using a Spectra Max 340 spectrophotometer (Molecular Devices, Sunnyvale, 

Calif.). For kill assays, fresh overnight cultures were transferred (107 cfu ml−1 in a volume of 

1.0 ml.) into BHI broth containing 50 µg/ml nisin A fermentate or nisin V fermentate alone 

and in combination with of thymol, carvacrol and cinnamaldehyde respectively. The samples 

were incubated for 180 mins at 37°C. Cell growth was measured by performing viable cell 

counts by diluting cultures in one-quarter-strength Ringer solution and enumeration on BHI 

agar plates.  

Model Food Trials  

A commercially produced chocolate milk drink and a fresh chilled commercially produced 

chicken noodle soup product were streaked on Listeria Selective Agar (LSA) (Oxoid) to 

check for the presence of Listeria. Aliquots of chocolate milk and chicken noodle soup were 

aseptically transferred to 1.5 ml Eppendorf tubes and inoculated with approx 1 x 107 cfu ml-1 

Listeria monocytogenes EGDe or Listeria monocytogenes F2365 repectively. Chocolate milk 

samples were treated with 50 µg ml-1 of fermentates of nisin A and nisin V, alone and in 

combination with trans-cinnamaldehyde at a concentration of 210 µg/ml to achieve final 

volumes of 1 ml. Samples with trans-cinnamaldehyde alone at the same concentration 

served as controls. Chicken soup samples were treated with 50 µgml-1 of fermentates of 

nisin A and nisin V, alone and in combination with carvacrol at a concentration of 195.2 



µg/ml to achieve final volumes of 1 ml. In both experiments, samples were incubated at 37ºC 

for 3 hours. The kill effect of nisin fermentates alone and in combination with either trans-

cinnamaldehyde and carvacrol against Listeria was examined by serial dilution and plate 

count technique using Listeria Selective Agar (Oxoid Ltd). All tests were conducted in 

triplicate. 

Statistical analysis 

Statistical analysis was carried out using the software package Sigmastat 3.5. Groups were 

compared by Kruskal Wallis One Way Analysis of Variance, with post hoc comparison by the 

Student Neuman Keuls method (except where group sizes were unequal; Dunn’s 

comparison method was used in this case). P < 0.05 was considered to be significant in all 

cases. 

Results 

Conversion of an industrial nisin A production strain to a nisin V producer. 

To initiate studies that would more accurately reflect the situation in which nisin is used 

commercially (as a nisinpreparation such as Nisaplin®), it was necessary to generate a nisin 

V-containing spp for experimental analysis and comparison.  To that end we created a 

genetically stable nisin V producer of the commercial Nisaplin® production strain L. lactis 

DGCC 10042 through double crossover homologous recombination. This ‘self cloning’ 

strategy means that following excision and gene replacement, no heterologous DNA is 

present in the final constructs. The nisV gene (generated by PCR based mutagenesis) was 

inserted at the appropriate location in the chromosome of the industry stain, L. lactis DGCC 

10042, via double crossover recombination to generate L. lactis DGCC 10042::nisV. Results 

of deferred antagonism assays with L. monocytogenes LO28 indicated that gene 

replacement had successfully occurred since the bioactivity profile of the newly constructed 

strain was enhanced relative to that of L. lactis DGCC 10042 (Fig.1a). Mass spectrometry 

analysis confirmed the production of peptides with a mass corresponding to nisin V (3322 



Da) (Fig. 1b). We also confirmed the absence of the pORI280 shuttle vector employed to 

facilitate the recombination process (data not shown). 

 

 

 

MIC-based assessment of nisin A and V fermentates and essential oils against L. 

monocytogenes used in this study.  

Nisin A exhibits antimicrobial activity against L. monocytogenes but it is not very potent (23, 

24). Indeed, in our previous examinations of nisin A and nisin derivatives against Gram 

positive pathogens, we observed that Listeria strains exhibited the greatest natural 

resistance to nisin A (11). Thus a decision was made to investigate the sensitivity of a wider 

range of Listeria isolates, and in particular those associated with food-borne outbreaks 

(Table 1), to the nisin-containing fermentates for direct comparison. Additionally, the 

sensitivity of the strains to the essential oils thymol, carvacrol and cinnamaldehyde was 

assessed to establish suitable concentrations for combinatorial studies. Previous studies 

have demonstrated the enhanced efficacy of nisin V to nisin A using equimolar 

concentrations of purified peptides (10, 11). In this study, a semi-purified preparation 

containing nisin V obtained through fermentation was produced for the first time at 

laboratory-scale for direct comparison with the nisin A containing equivalent. These 

investigations revealed that the nisin V spp is indeed two-fold more active (MIC of 39 µg/ml) 

than its nisin A equivalent (78 µg/ml) against L. monocytogenes EGDe, L. monocytogenes 

LO28 and L. innocua FH1848 (Table 2). Similarly, nisin V was also two-fold more active 

(MIC of 62.5 µg/ml) against L. monocytogenes F2365 and L. monocytogenes 33013 than 

nisin A (125 µg/ml).  



The minimum inhibitory concentration for each of the essential oils under investigation was 

also determined for all L. monocytogenes isolates (Table.2). Thymol was found to 

completely inhibit growth at concentrations of 156 µg/ml (EGDe, 33013 and 33413) and 312 

µg/ml (F2365 and LO28). The MIC of carvacrol was determined to be 156 µg/ml for L. 

monocytogenes 33413 and 625 µg/ml for both L. monocytogenes F2365 and L. 

monocytogenes 33013. Both L. monocytogenes EGDe and LO28 exhibited MIC values of 

312 µg/ml. In experiments conducted with trans-cinnamaldehyde, MICs ranged from 156 

µg/ml for L. monocytogenes LO28 to 312 µg/ml for all remaining L. monocytogenes isolates 

(EGDe, F2365, 33013 and 33413). These values are in close agreement with previously 

established values (25).  

 

Growth and kill curve-based comparisons 

Having demonstrated the increased specific activity of the nisin V spp against all the Listeria 

strains utilised in this study through MIC determinations, we sought to examine (i) the impact 

on bacterial growth of the spp alone and in combination with the selected essential oils 

through growth curve analysis, and (ii) the ability of the combinations to kill the bacteria 

using time-kill curve analysis. Both L. monocytogenes EGDe and L. monocytogenes LO28 

were selected as test strains for growth curve experiments. For growth curves, a sub-lethal 

concentration of 25 µg/ml was used (as previously employed by Field et al., 2010 (11)) for 

each of the nisin spp in combination with a range of concentrations (100-330 µg/ml) for each 

essential oil. In the presence of identical concentrations of spp (25 µg/ml) L. monocytogenes 

EGDe and L. monocytogenes LO28 had a longer lag time for nisin V compared to nisin A in 

all experiments. When combined with 100 µg/ml thymol (Fig. 2), carvacrol (304 µg/ml and 

152 µg/ml for EGDe (Fig. 3A) LO28 (Fig. 3B)) or trans-cinnamaldehyde (327.6 µg/ml and 

327.6 µg/ml for EGDe (Fig. 4A) and LO28 (Fig. 4B)), a significantly longer delay in growth 

was observed for the nisin A + essential oil combination than with either compound used 

alone. The combination of nisin A with either carvacrol or cinnamaldehyde produces similar 



growth inhibition to nisin V alone (Fig. 4 and Fig. 5). Notably, the most profound delay in 

growth was observed for the combination of nisin V with either thymol (Fig. 2), carvacrol (Fig. 

3) or trans-cinnamaldehyde (Fig. 4) against both LO28 and EGDe. 

In order to compare the bactericidal activity of nisin A and nisin V fermentates over a defined 

period of time, L. monocytogenes EGDe (1 x 107 cfu/ml) was exposed to 50 µg/ml of each 

fermentate in combination with 195.2 µg/ml carvacrol (Fig. 5A), 100 µg/ml thymol (Fig. 5B) 

and 210 µg/ml trans-cinnamaldehyde (Fig. 5C) in BHI broth for a period of 3 hours at 37ºC. 

In all cases and at the concentrations used, cell numbers remained static or slightly 

increased when the nisin A spp, thymol, carvacrol and trans-cinnamaldehyde were used 

singly (Fig. 5). In contrast, the nisin V fermentate resulted in a 1 log reduction of EGDe over 

the 3 hour period. With respect to combinations of antimicrobials, the antimicrobial potency 

of nisin A was significantly enhanced when used in combination with all three essential oils 

bringing about a 1 log (+thymol, 1.8 x 106 cfu/ml) (Fig. 5B), 2 log (+trans-cinnamaldehyde, 

2.57 x105 cfu/ml) (Fig. 5C) or 3 log (+carvacrol, 8.53 x 103 cfu/ml) (Fig. 5A) reduction in 

bacterial cell counts. However, the combination of nisin V with all three essential oils proved 

most effective in that a 2 log (+thymol, 1.28 x 105 cfu/ml) (Fig. 5B), 4 log (+cinnamaldehyde, 

3.15 x 103 cfu/ml) (Fig. 5C) and greater than 5 log (+carvacrol, not detected) (Fig. 5A) 

reduction in L. monocytogenes EGDe cell counts was achieved.  

 

 

Investigation of the anti-Listeria activity of nisin spp and essential oil combinations in 

a food matrix 

Having established the enhanced potency of nisin V alone and in combination with essential 

oils against a wide range of L. monocytogenes isolates using a variety of laboratory-based 

assays, we wished to ascertain whether this enhanced effectiveness could be translated to a 



food setting. We conducted two food trials, one involving a commercially produced chilled 

chocolate milk beverage and the other a commercially produced fresh chilled chicken noodle 

soup.  Although L. monocytogenes is not frequently associated with soup, the organism has 

been isolated from rice soup with cream, lettuce and meat products (26). The chocolate milk 

was spiked with L. monocytogenes EGDe to evaluate the efficacy of the nisin spp alone and 

in combination with trans-cinnamaldehyde, while the soup was spiked with L. 

monocytogenes F2365 to evaluate nisin spp and carvacrol combinations. For both food-

based assays, chocolate milk or soup was aseptically transferred to containers to which was 

directly added the powdered nisin spp A or V alone (50 µg/ml) or in combination with trans-

cinnamaldehyde (210 µg/ml) or carvacrol (195.2 µg/ml). L. monocytogenes EGDe or L. 

monocytogenes F2365 was added at a concentration of 1 x 107 cfu/ml. Following incubation 

at 37˚C for 3 hours, bacterial growth was monitored by serial dilution and plate counts on 

Listeria Selective Agar (LSA). In chocolate milk with trans-cinnamaldehyde alone, L. 

monocytogenes EGDe numbers remained static relative to initial inoculum levels (1.33 x 107 

cfu/ml) (Fig. 6A), while a very slight increase in cell numbers was observed for the sample 

containing the nisin A spp (3.73 x 107 cfu/ml). A 1 log reduction (3.33 x 106 cfu/ml) was 

achieved by the nisin A and cinnamaldehyde combination. The best results were obtained 

for the nisin V spp alone (a 2 log reduction to 3.33 x 105 cfu/ml) or nisin V in combination with 

cinnamaldehyde (a 4 log reduction to 5.0 x 103 cfu/ml) (Fig. 6A).  

In chicken noodle soup both the nisin A and nisin V spp (50 µg/ml) alone resulted in a 1 log 

reduction (2.0 x 106 cfu/ml and 1.67 x 106 cfu/ml, respectively). The combination of either 

nisin A or nisin V (50 µg/ml) with carvacrol (195.2 µg/ml) demonstrated a potent effect, 

reducing cell numbers by 5 log (4.33 x 102 cfu/ml) and >5 log (not detected), respectively 

(Fig. 6B). While the model food results are in close agreement with the broth-based kill curve 

experiments, more importantly they demonstrate that the enhanced nature of nisin V when 

applied as a commercial-like fermentate is maintained even within the complex environment 

of food. Even more notable is the combined effect observed between nisin V and 



combinations of both trans-cinnamaldehyde and carvacrol to control L. monocytogenes in 

food, reducing cell numbers significantly more than either compound alone and at least 2 

logs greater than nisin A or nisin A + essential oil combinations.   

 

 

 

Discussion 

There is an increasing need to develop economical, natural and effective food preservative 

systems to meet the public demand for convenient, safe, healthy and nutritious food 

products. Such demand has opened up new opportunities for the use of natural 

antimicrobials derived from plant, animals or microbial sources. Examples of investigated 

compounds include lactoperoxidase, lysozyme, plant essential oils, organic acids, 

bacteriocins and chitosan (12, 25, 27). However, while the preservative action of these 

compounds alone in a food system is unlikely to ensure comprehensive protection, 

combinations of natural antimicrobials with other non-thermal processing technologies within 

the hurdle concept could prove invaluable to food manufacturers and consumers in terms of 

food safety, shelf life, quality and nutritional properties. The synergistic effect of nisin in 

combination with the plant essential oils carvacrol, and thymol to inhibit the growth of food 

spoilage and pathogenic organisms such as L. monocytogenes and B. cereus has been 

previously reported (16, 17, 19, 28). Here we demonstrate the ability to provide even greater 

protection against L. monocytogenes by combining for the first time an enhanced nisin 

derivative (nisin V) in the form of a fermentate with a selection of essential oils. Although the 

enhanced activity of the nisin V containing spp compared to nisin A against several listerial 

targets is in agreement with our previous study (11), the enhanced partnership observed 

when nisin V was combined with carvacrol or cinnamaldehyde is remarkable.  In all 

instances, the nisin V and essential oil combination (thymol, carvacrol, cinnamaldehyde) 



outperformed their nisin A equivalents as observed by the extended lag phase of several 

hours. In time-kill assays, a 2-log decrease in cell numbers over and above that achieved by 

the nisin A combination was observed (carvacrol and cinnamaldehyde) against the target L. 

monocytogenes EGDe. The fact that this interaction is maintained in a food setting is 

noteworthy and serves to highlight the potential of enhanced nisin derivatives when utilized 

in multi-hurdle systems to effectively control L. monocytogenes in food. L. monocytogenes is 

of particular concern to the food industry. Although listeriosis is a relatively rare disease, 

mortality rates associated with outbreaks are high (29). Apart from the risk to human health, 

food product recalls due to Listeria contamination present an enormous financial burden, 

estimated to cost between $1.2-2.5 billion per year in the United States (30). Notably, in 

2003 the Food Safety and Inspection Services (FSIS) published a ruling requiring 

manufacturers of ready-to-eat foods to provide additional post processing control measures 

to kill Listeria or prevent its growth, placing increased pressure on food manufacturers with 

respect to food safety. Therefore, any new technologies or means to enhance the control of 

L. monocytogenes in foods are particularly desirable. The consistency of the nisin V and 

essential oil combination to control L. monocytogenes isolates is striking, especially since 

the level of essential oil used is bacteriostatic rather than bacteriocidal.  Notably, despite the 

demonstrated efficacy of essential oils and their components in vitro, their use as food 

preservatives has been limited because of the high concentrations needed to achieve 

sufficient antimicrobial activity. Additionally, their intense aroma, even at low concentrations, 

can produce adverse organoleptic effects exceeding the threshold acceptable to consumers. 

Consequently, the observed co-operation of nisin V and the essential oils carvacrol and 

cinnamaldehyde at these low concentrations (equivalent to approx. 0.02%) may provide the 

key to implementing essential oils in food preservation without simultaneous organoleptic 

effects. Crucially, we have demonstrated that this relationship is still maintained in complex 

food matrices, an important finding given that the hydrophobic nature of essential oils can 

lead to reduced efficacy by interactions with food matrix components such as fat (31), starch, 

(32) and the level of microbial contamination (33). It is worth noting that our studies 



employed a high initial inoculum (1 x 107 cfu ml-1) which is much higher than would be 

expected in a food processing plant (~20 cfu/g). The enhanced co-operation of the nisin V 

spp and essential oil mixture under these ‘abusive’ conditions suggests that were it to be 

incorporated with good manufacturing processes and other hurdle technologies, this 

combination could provide very effective anti-Listeria protection in food preservation.  

Additionally, the use of natural food grade antimicrobials in this way could provide a more 

acceptable solution for consumers wishing to buy more ‘natural’ products. In order for the 

food  industry to fully make the change from the use of artificial sources to purely natural 

sources research must address the limits of antimicrobial activity, the overall cost, the most 

effective  concentration, optimization of the antimicrobial, use of hurdle technology and 

address  regulatory concerns. This study has begun the process of answering some of those 

questions. 
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Table. 1. Listeria strains utilised in this study 

 

 

Strain 

(equivalent names) 

Food  
vehicle 

Source Reference  

L. monocytogenes EGDe n/a Isolated from Guinea pigs (Cambridge, 
England) 

(34)  

L. monocytogenes LO28 n/a Clinical isolate (Faeces of healthy 
pregnant woman) 

  

L. monocytogenes F2365 

( J-119, Ts43) 

Jalisco soft 
cheese  

Human clinical (California Outbreak 
1985)  

(35)  

L. monocytogenes 33413 

(Ts45) 

Paté United Kingdom outbreak, 1988) (36)  

L. monocytogenes 33013 

( Scott A) 

Pasteurised 
Milk 

Human Clinical (Massachusetts 
outbreak, 1983) 

(37)  

L. innocua FH1848 Food (fish 
paste/smoked 
haddock) 
 

Food (fish paste/smoked haddock) 
(UCC Culture Collection) 

UCC Culture 
Collection 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table. 2. Minimum inhibitory concentration determinations of  nisin A  and 
nisin V spp and the essential oils thymol, carvacrol and trans-cinnamaldehyde 
against a selection of  Listeria strains. 
 

Indicator organism nisin A 

µg/ml 

nisin V 

µg/ml 

Thymol 
µg/ml 

Carvacrol 
µg/ml 

Cinnamaldehyde 
µg/ml 

L. monocytogenes EGDe 78 39 156 625 312 

L. monocytogenes LO28 78 39 312 625 156 

L. monocytogenes F2365 125 62.5 312 312 312 

L. monocytogenes 33413 62.5 31.25 156 156 312 

L. monocytogenes 33013 125 62.5 156 312 312 

L. innocua FH1848 78 39 nd nd nd 

 

 

 

 

 

 

     



Fig. 1 Deferred antagonism assays of the Nisin A producing strain L. lactis DGCC10042 and 

the stable nisin derivative producing strain L. lactis DGCC10042::nisV against the indicator 

L. monocytogenes LO28 and (below) Colony Mass Spectrometry analysis of the nisin A 

(3354 amu) and Nisin V (3322 amu) producing strains utilised in this study.  

 

Fig. 2: Growth curve analysis of strains (A) L. monocytogenes EGDe and (B) Listeria 

monocytogenes LO28 in 25µg/ml spp of Nisin A (open square), Nisin V (open diamond), 

100µg/ml thymol (open circle) and combinations of Nisin A and thymol (closed square) and 

Nisin V and thymol (closed diamond). 

 

 

Fig. 3: Growth curve analysis of strains (A) L. monocytogenes EGDe and (B) Listeria 

monocytogenes LO28 (right) in 25µg/ml spp of Nisin A (open square), Nisin V (open 

diamond), 304µg/ml carvacrol (open circle) and combinations of Nisin A (25µg/ml) and 

304µg/ml carvacrol (closed square) and Nisin V (25µg/ml) and 304µg/ml carvacrol (closed 

diamond). 

 

Fig. 4: Growth curve analysis of strains (A) L. monocytogenes EGDe (left) and (B) Listeria 

monocytogenes LO28 (right) in 25µg/ml spp of Nisin A (open square), Nisin V (open 

diamond), 327.6µg/ml cinnamaldehyde (open circle) and combinations of Nisin A (25µg/ml) 

and 327.6µg/ml cinnamaldehyde (closed square) and Nisin V (25µg/ml) and 327.6µg/ml 

cinnamaldehyde (closed diamond). 

 

 

 

 

 



Fig. 5: Kill curve analysis of strain L. monocytogenes EGDe (initial inoculum 1 X 107 cells) 

upon exposure to 50 µg/ml of each spp alone and in combination with (A) carvacrol (CA) 

195.2 µg/ml (B) thymol (THY) 100 µg/ml and (C) trans-cinnamaldehyde (CN) 210 µg/ml in 

BHI broth for a period of 3 hours at 37ºC. Cell growth/kill was measured by performing viable 

cell counts by diluting cultures in one-quarter-strength Ringer solution and enumeration on 

BHI agar plates. ND = not detected. Asterisks indicate statistically significant differences 

between groups (*= p < 0.05).  

 

Fig. 6:  Survival of L. monocytogenes EGDe (initial inoculum 1 X 107 cells) in (A) a 

commercial Chocolate Milk product in the presence of cinnamaldehyde (CN) 210 µg/ml plus 

50 µg/ml nisin spp  A and V, and (B) L. monocytogenes F2365 (initial inoculum 1 X 107 cells 

)in a commercial chicken noodle soup product in the presence of carvacrol (CA) 195.2 µg/ml 

plus 50 µg/ml nisin spp A and V. Samples were incubated at 37º C for 3 hours prior to plate 

count analysis on Listeria Selective Agar (LSA).   ND = not detected. Asterisks indicate 

statistically significant differences between groups (*= p < 0.05).  

 

 

 

 

 

 

  



 

 

 

 

Fig. 1 Deferred antagonism assays of the Nisin A producing strain L. lactis DGCC10042 and 

the stable nisin derivative producing strain L. lactis DGCC10042::nisV against the indicator 

L. monocytogenes LO28 and (below) Colony Mass Spectrometry analysis of the nisin A 

(3354 amu) and Nisin V (3322 amu) producing strains utilised in this study.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Fig. 2: Growth curve analysis of strains (A) L. monocytogenes EGDe and (B) Listeria 

monocytogenes LO28 in 25 µg/ml semi-purified preparation of Nisin A (open square), Nisin 

V (open diamond), 100 µg/ml thymol (open circle) and combinations of Nisin A and thymol 

(closed square) and Nisin V and thymol (closed diamond). 
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Fig. 3: Growth curve analysis of strains (A) L. monocytogenes EGDe and (B) Listeria 

monocytogenes LO28 (right) in 25 µg/ml semi-purified preparation of Nisin A (open square), 

Nisin V (open diamond), 304 µg/ml carvacrol (open circle) and combinations of Nisin A (25 

µg/ml) and 304 µg/ml carvacrol (closed square) and Nisin V (25 µg/ml) and 304 µg/ml 

carvacrol (closed diamond). 
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Fig. 4: Growth curve analysis of strains (A) L. monocytogenes EGDe (left) and (B) Listeria 

monocytogenes LO28 (right) in 25 µg/ml semi-purified preparation of Nisin A (open square), 

Nisin V (open diamond), 327.6 µg/ml cinnamaldehyde (open circle) and combinations of 

Nisin A (25 µg/ml) and 327.6 µg/ml cinnamaldehyde (closed square) and Nisin V (25 µg/ml) 

and 327.6 µg/ml cinnamaldehyde (closed diamond). 
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Fig. 5: Kill curve analysis of strain L. monocytogenes EGDe (initial inoculum 1 X 107 cells) 

upon exposure to 50 µg/ml of each semi-purified preparation alone and in combination with 

(A) carvacrol (CA) 195.2 µg/ml (B) thymol (THY) 100 µg/ml and (C) trans-cinnamaldehyde 

(CN) 210 µg/ml in BHI broth for a period of 3 hours at 37ºC. Cell growth/kill was measured 

by performing viable cell counts by diluting cultures in one-quarter-strength Ringer solution 

and enumeration on BHI agar plates. ND = not detected. Asterisks indicate statistically 

significant differences between groups (*= p < 0.05).  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Fig. 6:  Survival of L. monocytogenes EGDe (initial inoculum 1 X 107 cells) in (A) a 

commercial Chocolate Milk product in the presence of cinnamaldehyde (CN) 210 µg/ml plus 

50 µg/ml nisin spp A and V, and (B) L. monocytogenes F2365 (initial inoculum 1 X 107 cells) 

in a commercial chicken noodle soup product in the presence of carvacrol (CA) 195.2 µg/ml 

plus 50 µg/ml nisin spp A and V. Samples were incubated at 37º C for 3 hours prior to plate 

count analysis on Listeria Selective Agar (LSA). ND = not detected. Asterisks indicate 

statistically significant differences between groups (*= p < 0.05).  

 

 


