185 research outputs found

    Plan-S update

    Get PDF
    Update on Plan-S for DIAS Open Access Week briefin

    General Relativistic Three-Dimensional Multi-Group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae

    Get PDF
    We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating 2727-MM_\odot progenitor in full unconstrained 3D and in octant symmetry for \gtrsim380ms 380\,\mathrm{ms}. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.Comment: Accepted to Ap

    Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations

    Get PDF
    Binary neutron star mergers are promising sources of gravitational waves for ground-based detectors such as Advanced LIGO. Neutron-rich material ejected by these mergers may also be the main source of r-process elements in the Universe, while radioactive decays in the ejecta can power bright electromagnetic post-merger signals. Neutrino-matter interactions play a critical role in the evolution of the composition of the ejected material, which significantly impacts the outcome of nucleosynthesis and the properties of the associated electromagnetic signal. In this work, we present a simulation of a binary neutron star merger using an improved method for estimating the average neutrino energies in our energy-integrated neutrino transport scheme. These energy estimates are obtained by evolving the neutrino number density in addition to the neutrino energy and flux densities. We show that significant changes are observed in the composition of the polar ejecta when comparing our new results with earlier simulations in which the neutrino spectrum was assumed to be the same everywhere in optically thin regions. In particular, we find that material ejected in the polar regions is less neutron rich than previously estimated. Our new estimates of the composition of the polar ejecta make it more likely that the color and timescale of the electromagnetic signal depend on the orientation of the binary with respect to an observer's line-of-sight. These results also indicate that important observable properties of neutron star mergers are sensitive to the neutrino energy spectrum, and may need to be studied through simulations including a more accurate, energy-dependent neutrino transport scheme.Comment: 19p, 17 figures, Accepted by Phys.Rev.

    Some fluid dynamical problems in astrophysics

    Get PDF
    Digitisation of this thesis was sponsored by Arcadia Fund, a charitable fund of Lisbet Rausing and Peter Baldwin

    Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE γ-ray observations with H.E.S.S.

    Get PDF
    The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100 MeV   100 GeV) γ-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8.7σ significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 ± 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r ≳ 1.7e17 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279

    TennisSense: a multi-sensory approach to performance analysis in tennis

    Get PDF
    The TennisSense Project, that is run in collaboration with Tennis Ireland, aims to create the infrastructure required to digitally capture physical, tactical and physiological data from tennis players in order to assist in their coaching and improved performance. This study examined the potential for using Wireless Inertial Monitoring Units (WIMU) to model the biomechanical aspects of the tennis stroke and for developing coaching tools that utilise this information. There is significant evidence in the current literature that the ability to accurately capture and model the accelerations, angular velocities and orientations involved in the tennis stroke could facilitate a major step forward in the application of biomechanics to tennis coachin

    Low mass binary neutron star mergers : gravitational waves and neutrino emission

    Get PDF
    Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients, and radio emission. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and post-merger gravitational wave signals and their neutrinos and electromagnetic counterparts. In this paper, we employ the SpEC code to simulate the merger of low-mass neutron star binaries (two 1.2M1.2M_\odot neutron stars) for a set of three nuclear-theory based, finite temperature equations of state. We show that the frequency peaks of the post-merger gravitational wave signal are in good agreement with predictions obtained from simulations using a simpler treatment of gravity. We find, however, that only the fundamental mode of the remnant is excited for long periods of time: emission at the secondary peaks is damped on a millisecond timescale in the simulated binaries. For such low-mass systems, the remnant is a massive neutron star which, depending on the equation of state, is either permanently stable or long-lived. We observe strong excitations of l=2, m=2 modes, both in the massive neutron star and in the form of hot, shocked tidal arms in the surrounding accretion torus. We estimate the neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity, disk composition, and outflow properties between the neutrino leakage and transport schemes.Comment: Accepted by PRD; 23 pages; 24 figures; 4 table
    corecore