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SOME FLUID DYNAMICAL PROBLEMS IN ASTROPHYSICS

In the first part of my dissertation I consider certain
aspects of the cosmic turbulence theory of galaxy formation (as
revived by Ozernoi). Using a generalised form of a transformation
due to Kurskov and Ozernoi I exhibit a formal equivalence between the
problem of turbulence in an expanding universe containing a coupied
matter—radiation fluid and in a non-expanding fluid with a time-
dependent viscosity. This enables me to extend the Olson—-Sachs
formula for vorticity generation in cosmic turbulence to a
matter-radiation fluid and to show that, contrary to the hypothesis
of Ozernoi, the turbulence can not have an inertial subrange at
the epoch of recombination.

In the second part I consider the linear inviscid
stability of axisymmetric flows. Using the projective form of
the perturbation equations (rather than the linear form) I obtain
a simple proof of a generalised Richardson criterion which holds for

all boundary conditions which do not actively feed'energy to the

perturbation. Further analysis shows the uniform density and pressure

discs with self-similar rotation laws, L= 2 1< A<2, are stable

to perturbations which are incompressible in character, but that

instability is a generic feature of differentially rotating compressible

systems; this result is explained in terms of over-reflection of
sound waves from the corctation radius. Twe-families of self-similar
discs in which the perturbation equations can be solved exactly are
described and used to estimate the magnitude of this effect.

In the third part I consider the problem of numerically
solving boundary value problems of the Orr-Sommerfeld type by
shooting methods and describe a unifying geometrical interpretation
of the principal methods. |

In appendix A I apply the methods of section two to plane
parallel flows and derive among other results an extension.of
Rayleigh's inflection point theorem to compressible isobaric and
isentropic flows.

In appendix B I describe a program for locating the zeros
of a holomorphic function which is very useful in eigenvalue problems
of the type considered in,sectidﬁ'three and givé an example of its

use.
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Chapter 1 - Cosmic Turbulence - 1

"In an expanding universe gravitational instability
would not be sufficient to form Subsystems, while turbulence

could do it . .m

C.F. von Weizsacker 1951

1 Introduction

Modern cosmography shows that the large scale
structure of the universe is almost indistinguishable from
that described by one of the simplest of cosmological
models; a universe containing a homogeneous mixture of
matter and electro-magnetic radiation expanding iso-
tropically from an initial singulaf state of infinite
density (the 'hot big bang' model). The simplicity of this
model and the strength of the evidence in its favour, in
particular the Hubble law, the isothermality and isotropy of
the microwave background and the relative abundancies of the
light elements, have raised it to the status of a standard
model (Peebles 1971a)*. Yet on a small scale it is eclear
that the Cosmos is not homogeneous; matter has agglomerated
into cdhdensations on many different length (and mass)
scales. One of the major problems of modern cosmology is to
understand the formation and evolufion of this structure, in

particular that of galaxies and clusters of galaxies.

& Though the recent claim that the microwave background
shows significant deviations from a pure thermal spectrum at

the 5 o 1level (Woody & Richards,1979) may slightly reduce
its standing.
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It is natural to suppose that the force of gravity
which maintains this structure was also the main agent of
its creation. In a homdgeneous statiec fluid any density
perturbation on a length scale greater than a scale (the
Jeans length) determined by the stabilizing effect of
pressure will grow exponentially. However in an expanding
universe this instability is much 1less efficient and
perturbations to the cosmic density only grow algebraically
in time (as tlB in the flat Friedmann universe), aAresult
obtained by Lifschitz (1946). (This effect is closely
related to the distinction between U and t*time introduced
in section 3).

This slow growth rate was interpreted as showing
that galaxies could not have been formed by the
gravitational amplification of random fluctuations in the
density of the cosmic matter. However Lifschitz also showed
that vortical motions in an expanding universe would not
decay as long as the universe was radiation dominated. As
an alternative to the gravitational instability theory
von Weizsacker (1951) suggested that galaxies were formed by

turbulent motion in the early universe¥*, an idea which was

¥ An advantage of this theory is that the galaxies being
the fossils of turbulent eddies are expected to possess
angular momenta and magnetic fields. The origin of the
angular momenta of galaxies used to be considered a serious
problem for the gravitational instability theory though it
now seems that the mechanism suggested by Hoyle (1951) and
investigated in detail by Peebles (1969) whereby galaxies
are spun up by the tidal torques of their neighbours affords
a satisfactory explanation. A recent numerical investiga-
tion is that by Efstathiou & Jones (1979). The generation

- 2 -
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supported by Gamow (1952). However apart from some work in
Japan by Nariai (1956a,b) no further work was done on the
theory until its revival by Ozernoi and his coworkers in the
late sixties (Ozernoi and Chernin 1968a,b; Ozernoi and
Chibisov 1971,1972; Ozernoi 1972; Kurskov and Ozernoi
1974%a,b,c). The review article by Jones (1976) gives a very
useful summary of the various theories of galaxy formation
(with particular emphasis on the cosmic turbulence theory).
Ozernoi's theory differed from the earlier work in
its introduction of the concept of 'freezing', in its use of
the improved cosmographic data of the sixties to constrain
the background model, and in its.emphasis on the theory's
relative insensitivity to the initial conditions. This last
idea was based on the assumption that the turbulence, no
matter how it originated, would evolve a universal
Kolmogorov spectrum on certain length scales from which the
mass and rotation distribution functions for galaxies could
‘be obtained. 1In this form the theory contains only one free
parameter (characterisiﬁg the strength of the turbulence) so
that it is not necessary to have very special initial condi-
tions to produce the observed structure of the universe.
However bécause this independence requires the existence of
a Kolmogorov spectrum at recombination it is important to
investigate the evolution of turbulence  in a universe which

on large scales and in some mean approximates the 'hot big

of magnetic fields by cosmic turbulence has been
investigated by Harrison (1970).

_3_
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bang' model to see if this can occur.

With our present limited understanding of even the
simplest form of turbulence (in a Newtonian fluid) and
considering the complications introduced by the expansion of
the universe and the relativistic nature of the cosmic fluid
(at early epochs the density of the radiation far outweighs
that of the matter) one might doubt whether useful results
could be obtained in this problem. Remarkably this is not
the case. I will show, wusing a generalisation of a
transformation originally found by Kurskov and Ogzernoi
(19T74a), that the hydrodynamic theory of a matter-radiation
fluid in an expanding universe is formally identical to the
familiar classical hydrodynamic theory. Thus the
cosmological problem is no harder (and no easier! ) than
the standard problem of turbulence. It follows that the
results obtained in the classical theory can, when suitably
interpreted, be applied in cosmology. And perhaps more
importantly the experimental evidence relating to these
classical results may also apply to their cosmological
extensions (the approximations made in turbulence theory are
usually Jjustified empirically by comparing the experimental
‘data with their predictions rather than by analytic argu-
ments; without the formal equivalence this could not be

ddne for the cosmological problem).
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2 Basic equations

Let wus consider cosmic turbulence against the
background of a Friedmann—Robertson-Walker type cosmological
model. This 1is reasonable if the typical scale of the
turbulence is much smaller than the horizon size; I exclude
the very early universe where this small wavelength
approximation is invalid. As the models with k=+1,0,-1 are
virtually indistinguishable at early epochs let us adopt the
simplest, k=0, and take as the  metric (in co-moving

coordinates)
da* = —dt” +a(tf{w+@l+p@l} [2:1]

The evolution of cosmic turbulence can be divided
into two phases. In the first, prior to recombination, the
matter and radiation are strongly coupled and can be treated
as a single fluid. The high sound speed and large Jeans
length allow inhomogeneities in the matter s;d radiation
densities to be ignored if the turbulent psculiar velocities

are small compared with ct With these assumptions one can

derive the equations (Peebles 1971)

T o = gpeed of light in vacuo
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2t a*
V-V =0 [2:2]
>+ 32 =0
/D""L a |I'™
e + l_,ba.l _
fo* Z 0

where/o is the matter density,/g the radiation density and
h™

ﬁ=ﬁn+§ﬁ [2:3]

the density of inertia. The viscosity arises from the

radiative transfer of momentum giving T

y = Z Ackh - _:57_ ’WbyLCﬁf;, [2:4]
Y 27 Taf

where A\ is the photon mean free path (Chan & Jones 1975).
Unfortunately the passage through recombination can
not be treated by any simple analysis. For want of a
better approximation I assume that recombination ocecurs
instantaneously (though this is an‘unreasonable assumption

and significant damping may occur in the transition

(Chibisov (1972)).

In  the second phase, after recombination, the
- 6 =
m = mass of the proton, o = Thompson cross section
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matter and radiation are decoupled and one need consider
only a pure matter fluid. However the much 1lower sound
speed means that this is now compressible and
gravitationally wunstable. ‘In the Newtonian approximation

one can derive the hydrodynamic equations

L L gy G LT Y opy,

st ta YV Y T = VY -1V
2 Lvilev) + 34 =0 [255]
%é-*—q, ((o'“) a °

\72¢ = qv&(ﬂ—/é) = mr&«Fg

spatial

where P is the density,,g th%(mean density and

S = M : [2:6]

3 Transformation of variables

The dynamical equations, both before and after
recombination, contain terms generated by the cosmic expan-
sion. It is remarkable that these can be removed,
completely in the pre-recombination and almost completely in
the post-recombination equations, by transforming to new

variables. These are, in the pre-recombination phase,
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'S

¥ = (Xﬁfl(’ talrg) Y

L = x(a/agdl

dt™ = 'B(a/a,ﬂ>"'(/+a/av>"alt [3:1]

V¥ = wPE (0 tagma) V

2 = Mz/z'l(a/aw)”(Ha/aw)%

and in the post-recombination phase,

»

v o= ye cajagd ¥

L*

il

Y (d4QLqV) L
* -2
dt" = ¢ (@/dy)) At

" y

Vi= ye ¥ [3:2]
44/4:— _ Yzé—z (a/aw/);{/u
= = (d/aa(/>3{0

f
" = Y€ (alay) ¢

where ajlis the value of @4 at the epoch of equality when

'fi- = g‘ ﬁi = 4 | [3:3]
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and M,F ,X’,é are arbitrary constants (this freedom arising
from one's ability to independently rescale length and time
in the Newtonian 1limit). . In these variables the dynamical

equations become

* * * 2 *
A Al 2 AL A
2t -
[3:4]
v. :z/}v* ___O
before recombination and
W oy, vyt +dvﬁ = YV - yof
S t*
21 1 v PYT) =0 [3:5]
> t* ‘
*
VT = yetume 2 g
lv
after recombination.
It is convenient to choose
oy _ o a [3:6]
X=p =Y a,, =1 £ = ek
Y I +a,,

Then ©both transformations reduce all lengths to their

comoving values at the epoch of equality (note that this
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"t and t* as functions of a (ar =1)

ec
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transformation has already been carried out in equations
[2:2],[2:5]) and give the same transformation of velocities
at recombination.

Combining the defining relations for t* with the

Friedmann equation (see e.3z., Peebles 1971)

|

(2) = 55(p+p)

and integrating we get (see fig.1)

iy
= L -3 3
MGt b (t+fa) (a=2) + 2

-
li-"/;{aﬂc&wu'gﬁ‘”fa- 3 a<a,%[3:8]

_ b G f/; ;}
Conal, T An St +‘/: ava,,

Perhaps the most interesting feature here is that
though the Universe expands for an infinite amount of real
time, for its hydrodynamic evolution it only has a finite
amount of t* 'time"'. Hence, just as large scale motions in
the early universe are frozen because insufficient time has
elapsed for them to undergo significant evolution, so in the
late Universe large motions are frozen because there is not
enough 'time' left for their further evolution. Thus the

use of this formalism allows a very natural interpretation
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of the important concept of 'freezing' introduced by

Ozernoi.

4 Fvolution of turbulence

A further advantage of this transformation is that
the reduction of the problem to one in a non-expanding fluid
greatly simplifies the theory and assists one's intuition.
This is especially true in the pre-recombination phase where
the transformed equations differ from those of a
conventional fluid only in having a time-dependent
viscosity. In the inviscid 1imit even this difference
disappears and we have a body of material which by
mechanical substitution will Yyield cosmological results.

For example it is obvious from energy conservation
that the mean value of U*l'(corresponding to (I+q>2171 )
is constant. Thus in a radiation dominated Uhiverse (a<<l)
the mean square peculiar velocity is constant whereas in a
matter dominated one (a>>| ) it falls off as afL . This
well known result (Lifschitz (1946)) is important because it
shows that a theory which posits observable consequences of
primordial turbulence (in particular the formation of
galaxies) is only tenable in a Universe which is radiation
dominated for a substantial part of the time prior to
recombination. And it also shows that the hydrodynamics of

matter dominated and radiation dominated Universes can be

quite distinct. This last remark acquires more significance
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when one realises that one of the few analytiec results in
the theory of cosmic turbulence, the vorticity generation
formula of Olson and Sachs (1973), was derived for a pure
matter fluid in a Newtonian Universe.

It is therefore of considerable interest that we
can, by applying this transformation (or rather its inverse)
to the classical formula of Proudman and Reid (1954), obtain
not only the formula of Olson and Sachs, but also its
analogue in a Universe with arbitrary radiation content, and
this without the heavy algebra of their paper. Indeed the
very simplicity of the derivation tends to‘ hide tﬁe
significance of the result. But as Jones (1976) remarks
"although the O0Olson-Sachs analysis contains no detailed
spectral information it does provide a criterion for
deciding whether or not inertial transfer can win out over
the cosmic expansion. It will obviously be of great value
to extend the 0Olson-Sachs type analysis yet further."

Neglecting viscosity and using the Millionshchikov
hypothesis of zero fourth-order velocity cumulants (i.e. the
assumption that the fourth order correlations can be related
to the lower order correlations by expressions which are
exact in the case of normally distributed variables, that is
if 1,2,3,4 denote four velocity components at four space-

time points

—_—— ———

1234 = 12.34 + 13.24 + 14.23;

the implications of this closure hypothesis are well
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discussed in Monin & Yaglom) Proudman & Reid obtained the

differential equation

fg;}“ = .31-(597)2' [4:1]

for ;;} the mean square vorticity. This they solved 1in

terms of the Weierstrass elliptic function 63 obtaining

Wt = Z)}?P(ocﬁﬁiﬁwé’i) ;0. 1) [4:2]

—_—

where of is the value of ¢J° at L,, these being the two
constants of integration, and x a constant ~ 12, The

equivalent cosmological equation is

r
o = -—a(l+gg p r/ooo Ao (14 Q)
“% al(+ad vz a(l{va)

0

dt;'o,h) [4:3]

which in the matter dominated limit reduces to the formula
given by blson and Sachs. This expression is thus an exten-
sion of their result to a fluid containing both matter and
radiation¥,

This result should be viewed with caution. The neglect
-of viscosity is serious, the more so since vorticity produc-
tion 1is concentrated in the small eddies where viscous
effects are largest. Another possible objection is that it

- 13 =
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5 The Form of the Spectrum

These results do not tell us much about the struc-
ture of the turbulence. Pértial information about this can
be obtained by wusing some of the standard concepts of
classical turbulence theory such as the energy spectrum, its
division into ranges, the Kolmogorov theory of the energy
cascade, the universal equilibrium and its inertial subrange
(Monin and Yaglom 1975).

If we define the two point velocity correlation

tensor

Rj(fb) = Al () Uy (et R) [5:1]

is derived using Millionshchikov's hypothesis which is known
to be unreliable. But, as pointed out by Proudman and Reid,
the form of equation [4:1] does not actually depend on this
hypothesis. It is quite easy to show (see e.g. Monin &
‘Yaglom) that if one ignores viscosity,

d' o = w2 5,‘2)]“ [4:4]
At* e

where » is the skewness of the random variable %94 /2X, Thus
the hypothesis has only been wused to assign a definite
value to »; but whereas when Proudman and Reid wrote their
paper it was thought that as one proceeded to larger values
of the turbulent Reynolds number %, 4 would tend to some
asymptotic constant, it has become increasingly clear over
the last ten years that in fact continues to rise with
increasing R.. The reason for this is the intermittent or
localized nature of high Reynolds number turbulence, an
aspect of the theory to which increasing attention is now
being paid (see Rosenblath & van Atta 1972).

- 14 -
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which 1is a well defined quantity if the turbulence 1is
statistically homogeneous (the bar denotes an average which
in this context could be taken to be spatial, but is

probably better thought of as an ensemble average) and its

associated Fourier transform
- chel 2 g
5 = ” ‘o A h .
@13 (&) oy Ujé [SHERS [5:2]

it is easy to show that in the isotropic case if the flow is

incompressible

_ E(4) _ Rk .
&lﬁ (f;> ~ ;5725: [.éj ﬁzo J [5:3]

where the scalar function tﬁ has been so defined that

P - mE[&)d& [5:4]

SR

It is clear that the function E provides a natural
way to give a precise definition to the intuitive concept of
the amount of energy contained in the eddies of a certain
size; it is usually called the energy spectrum of the turbu-

lent flow.

To sfudy the time evolution of the turbulence it is
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natural to seek a dynamical equation for E—. If we do this,
differentiating the definitions given above and using the

Navier Stokes equations we obtain

%E(Jz) + Tlh) +29 4 E(4) = o [5:5]

o

where 'T(&) is an expression generated by the non-linear
terms in the Navier Stokes equations and depending on the
third order velocity correlations. It represents fhe
transfer of energy by inertial effects from one scale to
another and is usually called the transfer term.
Unfortunately the third order correlations that occur in the
expression for 7Y%Q are unknown functions. If we attempt to
form a dynamical equation for them it contains fourth order
correlations, and in general the evolution of the correla-
tions of a given order depends on correlatiohs of order one

higher. Thus we are unable in this way to obtain a closed

system of equations. This problem of closure is central to

the standard statistical theory of turbulence; although
many solutions have been proposed (for example
Millionshchikov's hypothesis) ﬁone can be said to be very
successful.’ Several approximate expressions have been
proposed relating T(k) to E(%), the best known perhaps being

that due to Heisenberg!




Fig. 2 A typical energy spectrum and its division

into ranges.

E(%)

Facing page 17
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_ 0°_ , k I‘B/Z , 'f( _ ) I'L J .
T(t) *dzﬁ{{th(k) £ d—&fozb(k)& Ma} [5:6]

This and other similar approximations are widely discussed
in the literature and in general yield results that are in
good agreement with the experimental data over fairly large
ranges of wavenumber 4. However as many of the features of
the spectrum can be obtained by quite general dimensional
arguments we should not perhaps be too surprised at this.

It is customary in discussions of turbulence to
consider certain ranges of wavenumber, corresponding to
certain inversely related length scales L = ~&',. These
ranges are in no sense absolute but are defined with respect
to a particular turbulent flow. A typical energy spectrum
and its associated ranges is illustrated in fig. 2.

The region 1, immediately adjacent to -ﬁ = 0, is

the range of the largest eddies. These eddies decay on a

1ime'scale which is very slow relative to the general decay
of the turbulence and so the form of the spectrum in this
range remains nearly constant during the decay. It is this
behaviour which gives rise to the so-called invariants of
Loitsiansky and Saffmant If it 1is assumed that E(*)
possesses an analytic expansion aboﬁt &,:0 the invariant is

simply the coefficient of the leading term in the expansion.

However as these invariants relate to the behaviour of

T(see e.g. Monin & Yaglom 1975)




R —

1:5 - The Form of the Spectrum - 18

infinitely 1large eddies they must be considered somewhat
unphysical.

The region 2, where the spectrum peaks, is the
range of the energy containing eddies. The dynamical time
scale here ( L /4 where [ is the typical length and 4L the
typical velocity), determines the energy dissipation rate
for the entire flow. If we assume that an eddy breaks up

into smaller eddies in one eddy turnover time we get

for the energy dissipation rate.

The region 3, extending from just below the Scale
of the energy containing eddies'down to arbitrarily small
scales is célled the universal equilibrium range. Here the
dynamical time scale is much shorter than the decay time of

the energy containing eddies. In Kolmogorov's first theory

it is assumed that the motion on these scales is essentially

independent of the motion on the large scales and so reaches
a quasi-stationary equilibrium in which the flow of energy
into this range from the decay of the 1large eddies is
balanced by its dissipation in the small eddies. This
equilibrium is universal in that it depends only on the
energy’ dissipation rate £ and the viscosity Y . Using
these parameters one can construct the inner or micro scales

of length, time and velocity
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V=V g [5:8]

and when expressed in terms of these units this part of the
spectrum should be the same in any turbulent flow.

If the inner length scale is very much smaller than
the outer scale (of the energy containing eddies) there will
be a region of the universal equilibrium range, 3', in which
the effects of viscosity can be ignored. If such a region
exists it is called the inertial subrange of the universal
equilibrium range. Its great importance is due to the fact
that in Kolmogorov's theory the spectrum in this Subrange is
determined by the single parameter £ and thus the exact
functional form can be determined by dimensional analysis.
This yields the well known Kolmogorov '5/3' law for the

energy spectrum in the inertial subrange.

' 2/3  _ 53
E(k) oc £ 4 [5:9]

There is now experimental evidence that such a spectrum does
vccur in turbulent flow at high Reynolds number.

Although Kolmogorov's ideas were developed for a

tc one with a time dependent viscosity; the most useful
result of his theory, that in the inertial subrange the

energy spectrum should have the form [5:9] applies in a re-
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gion (in wavenumber space, not physical space) where viscous
effects are negligible. The main problem is simply to
locate the dissipation scale 7 or lower boundary of the

inertial subrange. It is readily verified that

My C

v o = a
ot

[5:10]

—Q\N

before recombination so that the 'viscosity' is a monotonic
increasing function of 'time'. Thus the dissipation scale
will be smaller than in a fluid with constant viscosity, but
the difference will be insignificant if the dynamical time
scale at that length scale is less than or equal to the time
scale on which the viscosity varies.
* 2
If the typical velocity on a scale L at 'time' T is

u*(L*,t*) then at each 'time' £~ there will be a certain
scale L?(fﬁ)with

WLty = /e [5:11]

and such that motions on larger scales are still 'frozen' in

their imitial forms. On smaller scales however the inertial
time scale will be much less than t*and sufficient evolution
will have occured for the spectrum to lose its initial form
and approach a Kolmogorov quasi-equilibrium. If the
dissipation length scale ?*is much smaller than L*, i.e. if

there 1s an inertial subrange, then the spectrum between
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these two scales will have the characteristic Kolmogorov

form

2/3 *—.5/3 Y *‘2/} *—5/}
R

E*(%*>~£* 4 = U t % [5:12]
as found by Kurskov and Ozernoi (1974a). The question of
course 1is whether Yf'is sufficiently small for an inertial
subrange to form. In normal laboratory flows this requires
a ratio L/Q, of at 1least 10‘f (Hinze 1975, page 253; this
reference also gives a good account of the various subranges
of the spectrum). The reason for this large ratio is that
the effect of viscosity extends upwards about a decade from
? and the effect of the initial spectrum down about another
decade from l—, then another couple of decades have to be
left for the inertial subrange. To be conservative I will
take a ratio of greater than JOZ'as the criterion for the

existence of an inertial subrange. This gives

/ -3/
L*/’Z* _ M*B/zt*f‘fy* 2/0L [5:13]

4

or

¥ u/3 /2,
U, > 1o (V) [5:14]
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Taking the present density of the Universe as

1G9 X100 K [gom” ]

(h is the Hubble constant normalized to 100 km s Mpc '

L) is the ratio of the density to the closure density)

of the microwave background as

[gen]

(Allen 1973) we find the present-day values

I

2:9 x100 0 K

bty x10 04 h° [gem ]

Assuming redshift recombination

22

:151]

and

and

:161]

2171

almost

2
independent of _Q hL, Ad. at recombination ~29.(Lh ,
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*
and thg must lie somewhere between 0.1 and 0.8 times this
: 3
(corresponding to (2 h" ~ 0.01 and ) h* ~ 1.0). Inserting

these values in the above inequality we obtain

' 10
U/:(tj% > 10 [oms") (W <1) [5:20]

which 1is impossible for subsoniec (and non-relativistic)
turbulence (at recombination the true velocity uo is at
*
least half Mb ). It is easy to check that on a scale
-2 1% *
10 Lb(tw> the inertial response time is smaller than the
time scale for variation of ‘V* even at CQQAJBO; thus the
2
above analysis is justified if 1 h <1,

From this inequality (which could be strengthened
for Ilhz<< 1) we can deduce that at recombination the
dissipation scale will be within two decades of the

* z
'melting' scale Lo ir 2 h <1. In these circumstances a

Kolmogorov inertial subrange will not be visible and much of

‘the . advantage of Ozernoi's theory disappears®, In

particular the mass and angular momentum distributions of
the galaxies formed can not be found from a simple power law
spectrum with a known exponent but depend on the wunknown
initial spectrum. Of course it is still possible for
sufficient turbulent activity to survive through the radia-
tion era to induce galaxy formation. However there is

another serious objection to cosmic turbulence as a

* Dr. Matsuda informs me that a student of his has
confirmed this result.

- B3 =
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progenitor of galaxies; the post-recombination turbulence
is highly supersonic and may be expected to produce strong
shocks and highly condensed objects whereas the galaxies we
observe are fairly diffuse .objects (Peebles 1971b, Jones
1977) . There 1is however another interesting possibility.
Because only a finite amount of 'time' 1is 1left after
recombination the motions that survive the pre-recombination
and recombination damping may be 'frozen' 1in the post-
recombination phase. If this is the case the residual mo-
zions though supersonic will not have enough 'time' to give
rise to shocks and large density contrasts. Ihis is termed
by Ozernoi the 'calm' mode of evolution of cosmic turbulence
to distinguish it from the usual 'rough' unfrozen mode. But
whether or not this happens depends critically on the amount

of damping‘that occurs during recombination.
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"Thus é flat rotating disc will remain. . . Its
rotation will not be wuniform and the differences in
rotational velocity will go lon producing turbulence. . .
The remaining turbulence exerts friction and thereby
dissipates energy. Therefore the rotation cannot be stable
unless it becomes uniform. . . The result will be the
contraction of part of the body towards the centre, while
the gravitational energy set free by the contraction enables
the rest of the mass to return to the surrounding cosmic
space, carrying with it most of the angular momentum of the

body."

C.F. von Weizsacker 1951

1 Introduction

Accretion disecs are now widely accepted as models
for some energetic astrophysical objects ranging in scale
from quasars and giant radio sources to dwarf novae and
galactic X-ray sources. The idea is that if a compact
object (such as a black hole or white dwarf) accretes matter
carrying significant angular momentum the matter will tend
to form a flat dise rotating about the compact objedt (in
some binary systems the thical light curves provide quite
direct evidence for the existence of such discs; Smak
(1971), Bath (1972)). 1If by some mechanism angular momentum
can be transpdrted outwards through the disc and the

specific angular momentum of the matter in the disc is an

- 97
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body."

C.F. von Weizsacker 1951

1 Introduction

Accretion dises are now widely accepted as models
for some energetic astrophysical objects ranging in scale
from quasars and giant radio sources to dwarf novae and
galactic X-ray sources. The idea is that if a compact
object (such as a black hole or white dwarf) accretes matter
carrying significant angular momentum the matter will tend
to form a flat disc rotating about the compact objedt (in
some binary systems the optical 1light curves provide quite
direct evidence for the existence of sSuch discs; Smak
(1971), Bath (1972)). 1If by some mechanism angular momentum
can be transported outwards through the disc and the

specific angular momentum of the matter in the disc 1is an
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increasing function of radius there will be a compensating
inward flux of matter (except perhaps at the outer edge);
as the matter moves deeper into the gravitational potential
well of the central object a newtonian calculation suggests
that half of its gravitational binding energy can be
dissipated (if the object is not a black hole more energy
can be‘released when the matter hits the surface) and in
this way objects with very high luminosities and hard
spectra can be formed.

The Dbasic structure of such disecs has been i

investigated by many workers. Perhaps the earliest descrip-

tion of the accretion disc mechanism (though in a different
context) is that in von Weizsacker (1951) which refers to an
investigation being carried out by Lust and Trefftz (Lust
1952). More recent investigations are those of Pringle and x
Rees (1972), Shakura and Sunyaev (1973), Lynden-Bell and
Pringle (1974), and Eardley and Lightman (1975). However in
a;l this work there is a problem with the angular momentum
transport process. The molecular viscosity is far too small
{(at least in conventional models) to transfer significant
amounts and'it is normal to posit a turbulent or magnetic
viscosity the magnitude of which is estimated using some
simpie phenomenological model (for example the 0L disc

models of Shakura and Sunyaev). The usual argument is that

because the Reynolds number of the disc is so large the flow

is probably turbulent; but with the exception of a
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preliminary analysis by Stewart (1975,1976) I know of no
previous attempt to prove this.

The prpblem I wish to consider is this. There
certainly exist axisymmetric solutions to the equations of
fluid mechanics describing gas discs where the Streamlines
are 'nearly circular (the molecular viscosity causing a
slight radial drift); but supposing such a disec to be
established would this state persist or would the flow
develop irregularities and become turbulent?

This question belongs to the theory of hydrodynamiec
stability which is extensive and in many areas still ill-
understood; it has three main branches, the inviscid, the
viscous, and the finite amplitude theory. The invisecid
theory of hydrodynamic stability originated with a study by
Helmholtz (1868) of the stability of the vortex sheet, a
problem considered in greater detail by Kelvin (1871), but
is largely the creation‘ of Rayleigh (1880). The theory
proceeds by a straightforward linearization of the Euler
equations about some flow invariant under a three parameter
symmetry group and a Fourier decomposition relative to these
sSymmetries (usually translation in time and two spatial
directions). In this way a 1linear second order ordinary
differential system is obtained, a maéhematically tractable
problem but one whose content, both mathematical and

subtle and was previously .
physical, is , obscure (consider for example Kelvin's

complaint of the 'disturbing infinity' in Rayleigh's work
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and the many discussions of the completeness of the normal
modes, see e.g. Lin (1961)). The fault is not so much in
the theory as in the approximation on which it is based. It
is well known that there are ambiguities associated with the
Euler equations which have to be resolved by going to the
Navier-Stokes equations; so too Lin (1945a,b,1946) was able
to remove many of the problems of the inviscid theory by
relating it to the viscous theoryt This theory, primarily
the creation of Orr, Sommerfeld and Heisenberg, is based on
an analogous linearization of the Navier Stokes equations
and has the formal advantage that the equationsA are non-
singular; however their study, analytic or numerical, is
much harder (essentially because there are two distinct
scales in the problem, the viscous and the dynamical). The
non-linear theory, developed among others by Meksyn & Stuart
(1951), is the most complicated and has not ye£ achieved a
standard form.

Examples are known of flows where the transition to
turbulence appears to be mediated by instabilities whose
description requires the use of each of these theories. In
general thé' flows which exhibit inviscid instability are
those with wnaxima in the modulus of the vorticity (the paradigm being the
vortex sheet). However certain flowé which are stable in
the inviscid approximation are destabilised by viscous
effects (the classical example of this is piane Poiseuille

flow in which the effect was first demonstrated by

- 30 -

These ambiguities can also be resclved by consideration of the inviscid

initial vzlue problem; see e.g., K.M. Case (1961) JFM 10,420.
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Heisenberg). This slightly surprising result can be
understood as a consequence pf the stabilising effect of
vorticity conservation in inviscid flows (at least in two
dimensions); with a slight viscosity vorticity generated at
the boundaries can diffuse into the flow. My feeling is
that this viscous destabilisation is primarily a boundary
effect and thus not likely to be important in Astrophysical
problems. Finally it is a curious fact that the flow in
which the transition to turbulence was first described by
Reynolds, cylindrical Poiseuille flow, appears completely
stable in both lineér theories. However there is good
evidence, both theoretical and experimental, that this flow
though stable to infinitesimal/perturbations ;s unstable to
perturbations of finite amplitude. It seems quite probable
that the axisymmetric gas flows I consider are unstable to
finite amplitude perturbations (as indicated I do not think
viscous destabilisation important), but this would be an
exceptionally complicated process to analyze and would in
any case require a prior study of the 1linear inviscid
problem. - For these reasons I have confined myself to the
linearised inviscid theoryT(in consequence this investiga-
tion is only concerned with dynamical instabilities and does
not consider possible secular instabilities, for example of
the type investigated by Goldreich & Schubert (1967), and

Fricke (1968)).

This is itself no easy problem unless the perturba-

- 31 -

For a viscous stability analysis of circular Couette flow see the classic

paper by G.I, Tavler, Zhil.Trans. Roy.Soc.(London) A223,28¢ (1923).
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tions are also axisymmetric. In this special case the
problem is well understood the solution being essentially
due to Rayleigh (1916). Consider a ring of fluid at some
radius and expand it so that it lies at a slightly larger
radius; the specific angular momentum, or equivalently the
circulation around the ring, 1is conserved during this
process. If the angular velocity of the ring at its new
location is now greater than that of the surrounding fluid
it will experience a force tending to increase the displace-
ment, if less the force will be a restoring one; thus if
the circulation increases (in magnitude) as one moves
outwards the rotation has a stabilising effect on
axisymmetric perturbations, if it decreases a destabilising
one. Another way of expressing this is that the effect is
stabilising or destabilising according as the angular
velocity (the global rotation) and the vorticity (the local
rotatipn) are parallel or anti-parallel. In its various
forms this is known as Rayleigh's criterion for the
centrifugal instability of axisymmetric flows. A convenient

quantitative measure is that given by
7/
k' = 280200 +200) = 100, [1:1]

which is the square of the frequency with which the fluid
ring would execute radial oscillations in the absence of

buoyancy forces (an imaginary frequency indicating as usual




2:1 - Introduction - 33
an exponential instability); this coincides with the
epicyeclic frequency of  orbital theory. Defining the

analogous Brunt-Vaisala frequency h/ for the buoyancy forces
it 18 reasonsble to expect that the condition for an axisymmetric
radially

rotating‘ stratified system to be stable with respect to

axisymmetric perturbations is

K* + N’- > O [1:2]

In section 4 I give a formal proof of this result.

It is clear that this argument 1is inapplicable to
non-axisymmetric perturbations where angular momentum can be
redistributed by azimuthal ©pressure gradients, however
Chandrasekhar (1960, summarised in the first edition of his
book 'Hydrodynamic and Hydromagnetic Stability' (1961) but
not the second) claimed that the result did in fact apply to
all perturbations, both axisymmetric and non-axisymmetric.
Thisdwas.uisputed by Howard and Gupta (1962) who pointed out
that a cylinder of fluid at rest surrounded by one in
uniform . »etation must be Kelvin-Helmholtz unstable even
though the circulation increases outwards. In general the

: inviscid
stability of A axisymmetric flows to non-axisymmetric
perturbations appears to have received very 1little atten-
tion. This perhaps reflects the difficulty of the problem:

in cylindrical geometry there is no equivalent of Squire's

theorem (which in Cartesian geometry enables one to reduce




2:1 - Introduction - 34

the problem of the stability of plane parallel flows against
three dimensional perturbations to that against two
dimensional perturbations) and the equations contain such
additional terms that any attempt to apply what may be
termed the standard procedure, the manipulation of the equa-
tions into forms where the Wronskian relation between the
solution and its complex conjugate involves positive
definite integrals, requires great ingenuity and patience if
non-trivial results are to be obtained.

Most workers have attempted to produce generalisa-
tions of resuits obtained in the theory of plane parallel
flows (these are reviewed in Drazin and Howard (1966)), in
particﬁlar Rayleigh's inflection point theoren, the
Richardson number theorem of Miles (1961) and Howard (1961),
and the semicircle theorem of Howard (1961).

Of these the first has rather an odd history. At

the end of his famous paper of 1880, 'On the Stability or

Instability of Certain Fluid "Motions' Rayleigh stated
If the stream 1lines of the steady motion Dbe
congentric circles instead of parallel straight
lines, the character of the problem is not greatly
éhanged. It may be proved that, if the fluid move
between two rigid concentric circular walls, the
motion is stable, provided that in the steady mo-
tion the rotation either continually increases or

continually decreases in passing outwards from the

- 34 -
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axis.

Thus it was known to Rayleigh that the analogue for
axisymmetrié flows of his inflection point theorem was that
there should be an éxtremum in the vorticity, a result which
Kelvin (1880) claimed to have 'nearly reached in the year
1875 by rigid mathematical investigation . . . . but I was
anticipated in the publication of it by Lord Rayleigh'.
Despite this the result seems to have been forgotten among
astrophysicists so that Lebovitz (1967; repeated in Fricke
and Kippenhahn (1972)) could suggest that the generalisation
might be an inflection in the azimuthal velocity. The
correct result is stated without proof or attribution in
Spiegel and Zahn (1970) and Zahn (1974) (apparently by
private communication from D.Gough to E.Spiegel to
J.P.Zahn). However this result has only been demonstrated
for two dimensional perturbations of a perfeét fluid in
which case it is a particular instance of some much more
powerfﬁl results obtained by Arnol'd (1966) (who shows
Liapunov rather than linear stability; a special case of his
argument appears to have been discovered by Drazin and
Howard and there are suggestions of it in Kelvin's work).
The Richardson criterion has been independently
generalised by Sung (1974a) and Lalés (1975) (the 1later
considers a genfral swirling flow) though Sung's secondary
argument (197&3) that it is ©both a neéessary and a

sufficient condition is false (if it were true any

-~ 35. <

f Sung's argument is local and takes no account of the boundary conditioms,

cf. remarks on page 38.
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homogeneous shear flow would be unstable). In section U4 I
obtain a much simpler proof of this result and show that if
rather artificial boundary conditions are allowed it is
necessary and sufficient; I also restrict the frequency of
a growing mode to a certain region. A curious point which
emerges from the analysis is that allowing the perturbations
to have a three dimensional structure produces effects very
similar to those of a stable density stratification. This
partially explains why there is no analogue of Squire's
theorem and the difficulty of proving any results for
general three dimensional perturbations.

Several generalisations of the semicircle theorem
(which states that the complex phase speed CQ4-£ Cé of an
unstable disturbance in a plane parallel flow with rigid
boundaries lies within the semicircle having as diameter the
range of velocity of the basiec flow;+

2 2
View = Vemin,
2

: Vi, + Vesa 2
c, — e Pl |y o2 ¢

[1:3]

~5ee appendii A for a proof) have been claimed, but all those
known to me‘either involve special restrictions on the basic
flow or give a circle too large to be of much use. Thus
arren. (1976) proves the natural generalisation of the
semicircle theorenmn, that'the pattern speed of any unstable
mode lies within the semicircle having as diameter the range

of angular velocities of the basic flow, under the assump-

= 86 -

See also G.T.Kochar and R.K.Jain (1979)JFM,91,489.
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tion that the basic flow is that of a perfect fluid with the
Rayleigh discriminant KZ nowhere less that the square of the
mean angular velocity; Rathy and Chandra (1972) that if the

fiuid is heterogeneous and incompressible and

i

(ﬂﬂz);o,(ﬂﬂza‘k}}o e [1:4]

it lies within a circle centred on the origin of radius the
maximum angular velocity; Eckart (1963) that for a general
fluid it lies within a semicircle concentric with but larger
than the natural>one.

A related problem in the theory of rotating stars
was considered by Cowling (1951). His primary concern was
not whether differential rotation could lead to instability
but whether rotation could Suppress the Rayleigh- Taylor
instability and hence the onset of convection. This can
certainly happen for axisymmetric disturbances; a fluid
with a negative N will still be dynamically stable to
axisymmetric perturbations if Kz + Nz is positive (though
from the analogy with two component stratifications of the
thermohaline type an axisymmetric doubie-diffusive secular
instability should exist). From a local study of the non-
axisymmetric perturbations Cowling concluded that though
rotation modified convection it could not prevent it.

Indeed he argued that even if the density stratification was

statically stable except at one point where it was neutral,
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differential rotation would produce a dynamical instability.
However as with the analyses of Sung (1979%) and Stewart
(1976) this proves too much; the common fault is the
attempt to prove the existence of an instability from a
local approximation. This works when the problem is self-
adjoint and can be cast into the form of a variational
principle because 1local test functions can then determine
global upper bounds on the eigenvalues (and for this reason
local criteria can be found for stability to axisymmetriec

perturbations) but such cases are exceptional.

I should also mention a paper by Hazelhurst (1963)

who considers the stability of the spiral flow

— A B [1:5]
.(:,'I“o - ,ng +-ﬂ.§"“

of a perfect fluid. He claims that it is unsfable if the
flow spirals inwards and stable if it spirals outwards;
hoﬁever an elementary integration of his equation [31] shows

this to be incompatible with his boundary conditions.

2 The Basic Model

Consider the steady axisymmetric flow with pressure

ﬁ% and-density A in cylindrical polar‘coordinates A, G, ?
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supposed maintained by some suitable combination of a

pressure gradient and central (gravitational) force. To
simplify the analysis a homogeneous vertical structure is

assumed (but see discussion below); this translational
symmetry is needed to remove the } derivatives and obtain a
system of ordinary rather than partial differential equa-

tions.

If we 1linearicze about this basic flow and make

small (Eulerian) perturbations

U= ,u,~eJ‘ t VG + J«rg; [2:2]
in velocity, 4L in pressure and f) in density, we obtain a
system of linear differential equations. Using the
symmetries of the basic flow we Fourier analyze in T ,29 y

9, and consider each Fourier component separately;

symbolically if %/ denotes any perturbation quantity we

i(wt—md—/}?) aea

[Pl = gee

The linearized Euler equations then become (ef. Lalas 1975)
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o - = ’B_fb/f;o 3
= + ¢+ w, L 1
o v mp (2% s [2:4] }
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and the linearized continuity equation is
i
Il
’ mu o ' i
ol B - e +4’FW —J’—»—? +_9- 4 [2:5] ‘
S i fAc ct _
In these equations i
|
|
@, = 2.0, + 2L [2:6] |
) jﬁ
| |
is the vorticity of the basic flow and ? |
f
o = W ~— o L % [2:7] :hw

can be interpreted as m times the angular veiocity with
which the pérturbation appears to rotate as seen in a frame
rotating with the basic flow. The quantity N is the Brunt-

Vaisdli frequency, i.e. the frequencj with which a fluid

element would execute radial oscillations under the

influence of buoyancy forces alone ' 73
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L (ﬁl _ ﬁ/) } [2:8]
(o & 5

C 1is the sound speed (the Ssquare root of the ratio of the

Lagrangian changes in 1L and f’) and

9 = - te [2:9]

can be regarded as an effective local gravity.

The full set consists of two algebraic and two
differential equations: avoiding differentiation as far as
possible we use the two algebraic equations to eliminate

and W whereupon we obtain the differential system

' 2
- oL oy __t_zm_j
u—éilu, JI[I-FU_J +ﬂa_[ﬁ+,ll o |

[2:10]

. H 2 .
S LR SO
for «w and %L. This constitutes the fundamental system of
equations. Further elimination yielding a single second
order equation is possible, but neither necessary nor
desirable.

-In deriving this system it is necessary to make the
physically unrealistic assumption of a homogeneous vertical
structure in [2:1]. However the model may not be as bad as

it appears on first sight; it can be made to look much more
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respectable if one notices that (essentially because it has
reflection as well as translational Symmetry in } ) by
superimposing the solutions for +B and ~p one can produce
solutions where w and 1» are zero on two horizontal
surfaces. These represent a slab of fluid confined between
two rigid horizontal surfaces or confined by an external
medium of negligible density but capable of exerting a
pressure, 1i.e. a free boundary condition on the two

horizontal surfaces. A more radical approach is to consider

the two dimensional form of the above equations (obtained by

setting P = 0) as phenomenological equations for the
vertically averaged structure of a thin disec. This 1is
probably the more satisfactory interpretation.

This system has singular points at J& = 0, A = oo
and the point (or points) where o = 0. While the
Singularities at 0 and oo are essentially‘ coordinate
singularities and have 1little physical significance, those
which occur when O = 0, the corotation singularities (or
critical layers), are of great importance. The physical
reason .for this is not hard to see; at such points the
perturbation  is stationary in the corotating frame and
strong resonance effects are to be expected. It should

perhaps:be pointed out that the 'Lindblad Resonances' where

o = K = 2L, | [2:11]
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are not singular points of the system; this is because we
are considering a fluid system and have therefore fewer
degrees of freedom than are ﬁresent in a treatment starting
from the full Liouville equation.

The fundamental question is this: does the system
[2:10] admit a non-trivial solution satisfying suitable
boundary conditions and such that the frequency ¢ has a
negative imaginary part? If it does we have found’ an
exponentially growing disturbance of the basic flow [2:1]
which is therefore unstable. The converse is not true; the
flow may be destabiiised by non-linear effects and even in
the linear theory therelmay exist disﬁurbances associated
with the continuous spectrum of non-analytic modes which
grow algebraically in time (Chimonas 1979). However for
convenience we wWill use 'stable' to mean the absence of an
exponentially growing normal mode.

In answering this question it turns out to be
advantageous to sacrifice linearity (which is of little use
if one has no explicit solutions) for a reduction in order.

TR
P

we-define a new variable
;. = Toper [2:12]

we Iind that it satisfies the (Riccati) differential equa-

tion
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= (.f@ﬁg); '+ﬁ_’&{¢(;l— 5’) "

. [2:13]

+ (m - zﬂ;)(m-wog) +(N’—09§"}

The significance of this transformation is worth
considering. Physically in a linearized theory the absolute
magnitudes and phases are irrelevant; what are important
are the relative magnitudes and phases of the perturbation
components, information contained in the variable ; .
Mathematically the linearity of the system [2:10] means that
the evolution it determines in (a copy of) C? preserves the
ray structure (i.e. two sets of initial data which belong to
the same ray, or one dimensional Subspace, evolve into sets
of final data which also belong to the same réy). Thus it
also defines an evolution on the rays, i.e. in the projec-
tive Space:EGE). This space can be identified either with
the two sphere or ijﬁx&, the identification being given by
the Riemann. sphere construction (stereographic projection
from one pole to the tangent plane at the other pole). It
is probably better to think of ; as a point on the sphere
because this makes the topological structure more evident
and avoids the need for special treatment of the point at
infinity. Of course considerable information is lost in

this projection, but it is information which is not needed

- 4y -
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T To see this make the substitution M = ;’ ; the equation 4".: a+6-§’+cgk

B 1 « . -
then becomes -m=a 1‘+~3~7L+c which is of the same type.
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for the 'solution of the eigenvalue problem (at least

formally, in numerical computation there are some reasons

for retaining it; see chapter‘3l Thus the pProjective equa-
tion should display the fundamental behaviour of the system
more directly that the original 1linear system. And if we
could solve the projective equation, the solution of the
full linear system would be reduced to quadratures (indeed

it was by this method that I obtained the exact solutions

described in section 11).

3 The Boundary Value Problem

For convenience initially suppose the system to be
bounded by two rigid concentric cylindrical boundaries at
radii @ and 4—. Then the appropriate boundary conditions

are that the radial velocity perturbation should be zero at

the boundaries which implies

f = o A= g, 4 [3:1]

. Tn fact most of our results will be obtained under the more
general assumption that the boundary conditions require the

value of g to be real; the extent to which the results are

Cc

O

ntingent on this particular choice of boundary condition,
its physical significance, and the possible alternative
choices will be discussed later (in section 10).

The differential equation [2:13] together with the

- 45 o
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boundary conditions [3:1] seems to constitute a well defined
eigenvalue problem; there is however one residual ambiguity
which must be resolyed, the path from a to J- along which
it is to be integrated has not been specified. The question
is non-trivial because of the corotation singularities which
occur when o = 0 (we have tacitly assumed that 2 has been
analytically extended off the real axis into the complex
plane). Although it seems probable that this should be
along the real axis the correct answer can only be obtained
by a detailed analysis of the effect of viscosity on the
problem (see Lin(1945a,b 1946)) or by consideration of the
initial value problem. This shows that for growing modes
the path of integration should be along the real axis (or
homologous to this path). The correct choice for neutral
modes can then be found as the limiting case of the choice
for growing modes, i.e. along the real axis, but'indented at
a corotation point in the sense opposite to that in which
the'singularity would move if the frequency were given a
small negative imaginary part.

It is worth noting that this choice of path
destroys the - symmetry of the boundary value problem under
complex conjugation (or more physically an 'arrow of time'!
has been incorporated by considering the effect of
irreversible viscous pbrocesses operating in an internal

shear layer about the corotation point). Thus an anti-

spiral theorem of the type stated by Lynden-Bell and
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Ostriker (1967) which depends for its proof on the time
reversibility of the system does not apply in this case. (A
good example of the danger of time reversibility arguments
in fluid dynamics is the paradox that while a candle can

t
easily be blown out it is very hard to suck it out).

4 A Sufficient Condition for Stability

In the fundamental differential equation [2:13] the
only non-real quantities are O and ; : This allows a very

simple proof of a sufficient «condition for stability.

Suppose there exists a growing mode. Then the frequency c¢o

has a strictly negative imaginary part and the path of
integration can be along the real axis. Let us look at the

imaginary part of ;j for real values of 97. We find easily

Ao |* T2

) = -2l [ 22

[4:1]

+(m- 2 Il;)(m— u.,;) - ;“(Nl-rlo‘ll) }

Now if the boundary conditions are such as to
require the initial and final values of ; to be real this
expression cannot be of one sign for all 4 in the range of
integration and all real values of ;’.‘ The easiest way to
see this is to consider ;' as a point on the Riemann sphere
and the differential equation [2:13]

as defining a vector

field on the sphere. The real values of ;’ define a great

- 47 -
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circle on this sphere dividing it into two hemispheres. If
the vector field is regular and on this circle always points
from one hemisphere into the other, it is clear that an
integral curve of the vector field which starts on the
boundary between the hemispheres can-never return to that
boundary but is forever trapped in the hemisphere it enters.

It follows that if the boundary conditions require

; to assume real values a sufficient condition for

stability is

FAl e A 208 m-w,0) + INYIer) 2 o
e [4:2]

VieR  Vaefa ]

This can only hold for all values of the frequency w if the

stronger inequality

ot (mezeYm-al) F SN s 0 [aisg
F

is satisfied; this is equivalent to T

(2" +mi )i+ N°) — m (204 0,) 3o [4:4]

or

W A/L//f/z‘ +m) HEBRKT > (mas)? [4:5]
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(incidentally if we set /M =0 in this we have a proof of the

result previously obtained by physical reasoning, that a
sufficient condition for  stability to axisymmetric

disturbances is

Z 0 [4:6]

If we define a generalised local Richardson number

IBLKZ, % NZ//;?'F mz/‘lz;)
s [4:7]
(m )

%

I

the above condition becomes
|
Rz — [4:8]
4»

In this way we find that a sufficient éondition for
the stability of an arbitrary axisymmetric flow is that the

generalised Richardson number should everywhere exceed 1/4.

The analogous result for Plane parallel flows was suggested

by G.I.Taylor and proved (under certain restrictions 1later
removed by Howard(1961)) by Miles (1961). The axisymmetric
??;sult agrees with that obtained (using a method based on
that of Howard) by Chao-Ho Sung (1974). The advantage of

the preceding derivation is that it does not require one to

guess the (non-trivial) transformations which will

- 49 -
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eventually lead to a positive definite integral expression.
probably

The method can Abe applied to any inviscid hydrodynamic
stability problem where there is sufficient symmetry to
reduce the problem to a system of two 1linear ordinary
: would seem to be

differential equations; the general statement that in
all such systems a sufficient condition for stability 1is
that the equations should be oscillatory at the ecritical

layer (or corotation point) for all real frequencies. It is

easy to show that for the general axisymmetric swirling flow

Uy = 2.0 Ey +We, [4:9]

the appropriate generalised Richardson number is

BN+ KY) + mN & —2mBLW/R
(mal v g W)

e = [4:10]
(compare Lalas(1975)). 1In section 10 I extend these results
to more general boundary conditions.

Even if the generalised Richardson number is 1less
than .1/4 at some point this argument can be used to restrict
the possible values of ¢». For any unstable mode there must

exist a value of » in [a ,4—] for which

I l z~
(//3572+m7+ ——«/ﬁ:f)(k(ﬂ N+ 10’/2) s (2:7‘ ) [4:11]

This implies
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A 2 1 2 1\ 1 L
ol /a}z{““’v +~’1+_/”_2}<@.)—_Z _fZ(KiN)[u:12]
mt % met < m 2 m?

which confines ¢ to a disc centred on mJ2., It follows
that ¢O lies within the union of these disecs as “ runs from
a to lr. This result bears some resemblence to the
semicircle theorem of Howard (1961) but is quite distinct.
‘It is, as will be shown, the best possible result if the
only restriction placed on the boundary points and values is
that the boundary values of ; be real; the semicircle

Atheorem (for plane parallel flows) requires the special

boundary values of 0 or Co.

5 Importance of The Neutral Modes

The stability result found in the previous section
is quite weak: however it provides the starting point from
which stronger results can be derived by studying the
neutral modes. The essential tool is a simple result on the
persistence of solutions to a boundary value problem when
the parameters of the eqﬁation are varied. The argument,
which will be used several times, is that if a growing mode
exists for certain values of the parameters and we can vary
these in a continuous manner until they lie in a range where

from some stability criterion we know there to be no growing

modes, then at some point during the variation the mode must

become neutral (the mode can not disappear unless one of the
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corotation singularities moves onto the path of integra-
tion). It can not become an isolated non-singular neutral
mode because these when perturbed remain neutral; however it
is possible for two such to coalesce and produce one growing
and one decaying mode (an exact analogy is the behaviour of
the zeros of a polynomial with real coefficients when these
are ;aried; in principle complex zeros can arise from zeros
of multipljcity greater than two, but these are not
structurally stable). It follows that the limit of an
unstable mode is either a singular neutral mode or a double
neutral mode. Therefore stability or instability having
been demonstrated for a range of parameter values, if it can
be shown that in an extension of this range there are no
singular neutral modes and no double neutral modes then the
stability result holds for the enlarged range.

To do this we must seek characterisations of the
singular and double neutral modes that are incompatible with
thekboundary conditions, In this we are helped %y the fact
that ¢ 1is now a real quantity and thus 5' is the only
quantity left in the equation which can assume™ a complex
value. And indeed if the value of ; is real at a regular
point, it must remain so until one of the singular points is
reached. In particular if the boundar& conditions require
/; to assume real values, this property |  propazates 3 inwards
as far as the nearest singularity, and if for Simplicity we

temporarily assume a monotone rotation law so that there is




r
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only one corotation resonance, it follows that 5’ must

assume real values on either side of this point.

6 Structure at Corotation I

From the preceding discussion it is clear that an
analysis of what happens at the corotation singularity is
needed for an understanding of the Ssingular neutral modes.
Though this can be done in terms of the Riccati equation
[2:13] (see section 7) there is some advantage in
temporarily reverting to the linear form [2:10]. Examina-
tion of this system shows that in the neighﬁourhood of the

corotation point we can write it in the f‘or'm‘r

I = .Z;, Ao + A}T + A20}~— [6:1]
y' = =] 1y

where

— [6:2]
I

and the A. are constant 2x2 matrices. The corotation point
4

is a regular singular point and the solutions about this

point .ean be obtained by the method of Frobenius (see e.g.

Hille (1969)). If we write [6:1] as

- 53 -

Assuming o to have a simple zero; an infinitecimal variaticn of w will

remove higher even order zeros and reduce odd order ones to this case.

—_—
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orjf; y - [A+ A.,w +~'_]j [6:3]

and

jj = O’C(vo-l'j’a'-f:jla“l-% ~% 2 ) [6:4]

we find

(C+m)\1jm:‘§]::w /Jt(- 93 [6:5]

The indicial equation is

[eT-A,

= 0 [6:6]
which implies that the exponents are the eigenvalues of A,,
and provided these do not differ by an integer the
recurrence relation [6:5] allows one to to find two indepen-

dent series solutions of the differential system. In the

specific problem we are considering the matrix Ag is

r , “
wjﬂf% ¢(/5?+£‘_, )/ﬁ,
o et : [6:7]
LU ¢
" tpK'+NY) 2m L0
A

(all quantities being evaluated at corotation) and the indi-
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cial equation is

CL —Cc + {ﬁth + (ﬁz*’?ﬂl//lL)/\/z}/(mJL')z -0 [6:8]

giving
/ ! 11 ] ) £
where
72,,2 z 1 L .
) + (B+ m/nr )N
= LA /5,2 ) [6:10]
(mmJZ)

is the generalised 'Richardson Number' previously

introduced.
Let us now consider how this may be interpreted in

terms of the Riccati variable );. Excluding the special

cases when Y = 0 and Y = 1 and retaining only the leading

terms we find

1+y =
Aoz +Bo % Ac” + B
; pree 1y ) > [6:11]
Cor +Do= Co¥+]

where A QB ,C;;D are constants determined by the particular

solution chosen.

Thus as (O moves along the (indented) real axis,
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the path followed by 5’ is obtained (to lowest order in o)
from that of Crv by a bilinear transformation. In view of
the remark above it is clearly‘of interest to determine if
this can be confined to the real axis.

Now if 0< V <1 the path of & ” consists of two
straight line segments Jjoined at an angle of VYT . If the
bilinear transformation is non-degenerate the image of this
path will also contain a kink which will ©prevent it
coinciding with the real axis. Therefore ;’ can take real

values on both sides of the corotation point only if
AD = BC [6:12]

But if f  and 9, are the values taken by £ on the
o

eigenvectors of /\o,

A =fDC ; B—”ﬂD | [6:13]

Thus the condition that the bilinear transformation be

degenerate becomes

C)f = Cj)ﬂ [6:14]
° )

which is only possible in the (excluded) case >7= 0 or when

one of C ,D is zero (in which case all points map onto f
o

or ‘g which it is easily confirmed are real). In other
(/]

words if the differential System is non-oscillatory at the

corotation point there are two solutions which give real

values of g‘ on both sides of the corotation point and they

- 56 -
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are exactly the series solutions generated by the method of
Frobehius. (For an alternative derivation of this result
using the mean Reynolds stress of the perturbation see Miles
(1961)).

But if the generalised Richardson Number exceeds //4
at the corotation point, YV ={/L is a pure imaginary and the
behaviour of the differential system at this point is
oscillatory. In this case the path followed by 0‘9 consists
of arcs of two disjoint circles, one of radius 1 and the
other of radius e%/L?’ It is again clear that no non-
degenerate bilinear transformation can map this onto the
real axis. However if the transformation is degenerate it
maps everything onto i or 30 and these are now complex. We
conclude that in this case it is impossible for ; to take

real values on both sides of the corotation point.

7 Structure at Corotation II

- Let us again restrict ourselves to flows which have
only one corotation point and where the boundary conditions
require ; to take real values. We know from the previous
section that if singular neutral modes are to exist the
differential system must be non-oscillatory at the corota-
tion poirt and that if this condition is satisfied there are
in general two solutions which take real values on both

sides of the corotation point. If these solutions are

integrated out to the boundary points they give two sets of




2:7 - Structure at Corotation II - 58

real boundary values of ;' for which singular neutral ﬁodes
certainly exist. Thus if the generalised Richardson number
is less than 1/4 at any pointlit is certainly possible to
have singular neﬁtral modes. It is clear that any sharper
stability criterion must depend on using some global
property of the differential equation to relate values of ;
at the boundary points to those near corotation and will
thus be more involved than the simple Richardson criterion.
As before we begin by studying the behaviour near
corotation only this time we start with the Riccati equation
[2:13] and concentrate on the case 0g T g1/u. Abstracting

the essential features we consider the equation

5_[_‘_77 = fzf’fX§~ﬂ) [7:1]

where a_,f ,3 are given real analytic functions of o
(throughout this section a subcripted quantity denotes the
appropriate coefficient in- that quantity's expansion as a

power series in o, thus e.g.

2]

2
a = a + a o + a, g + ---- [7:2]

k=
Fh

Weé now seek an analytic solution of [7:1], we

find

nlo= X Al 58, 9,) [7:3]

i+j+¥z='n

- 58. -
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and in particular, if 4 = 0,

{

o = “o(i"fa)(i'ﬂ,) [7:4]

Now 4, cannot be =zero (for if it were the
singularity would be removable), therefore ;; must equal ji

or 3 and we may without loss of generality take

; - f [7:5]

Then

— _qo()cn'ﬁo> .
¢ = l—ao(fo—ﬂa)f' [7:6]

and the higher terms can be readily calculated provided

- (f -q: is not a positive integer.
4 (Jco So> P &
Either by direct comparison of [7:1] with [2:13],
or by correspondence with the results of the previous sec-

tion, we see that
oy

_Iclo (ﬁ)_.3a>) = Y = x//— QJﬁZ [7:7]

and that for 0 < ¥ < 1 there are two analytic solutions of

[7:1], one passing through 3 and the other through f at
¥ [~

o
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J
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Fig.1 The two analytic solutions of equation 7:1

and their relation to the attractor ﬂ and repellor;f

in the neighbourhood of 0o = 0.

Facing page 60

A

A

‘\\ The two real
(/ solutions

e o ————— S ———
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o =0. This confirms our previous results and in addition
yields the slopes of the two solutions at the corotation
point. The situation is best iliustrated graphically (see
rig.1). The vector field g/( 5’, 0 ) vanishes on two
curves ; =f(0’) and 5:3(0’) . As one integrates towards
the corotation radius ¢ = 0 one of these (say 9 ) will be
attractive and one (f:) repulsive, the motion of /; being
away from f(;)and towards‘gﬂﬂ; examination of [T7:1] shows
that this implies cx(f '9;)< 0. The expression [7:6] for
the slopes of the analytic -solutions at o = 0 now shows

that

Y
§; - JD > }; = | +Y L
[7:8]

=

|- ¥ ﬁl

MY
I
(o
Q
\l,
ALY
I

in other words (remembering 0<})<1) the analytic solution
which intersects the attractor at the critical point does so

with slope opposed to that of the attractor, whereas that

which intersects the repeller does so with a slope of the

same sign. Further, in the 1limit » — 0 the two solutions

coincide and in the limit ¥ —> 1 they coincide except in a

3

eighbourhood of the corotation point unless the slope of
the attractor ( 3|)_is zero.
To clarify the structure in the above 1limiting

cases and verify that there are no other real solutions we
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now derive the complete solution of [7:1]. The procedure ]

i
given above always enables us to find one analytic solution, |

\/\(a
ft
R

0

N [7:9]

with

T S
5 =5 o £ “y fe o [7:10]

_§ = é? + W [7:11]
& “
we find
Il
o dur t W g = o : [7:12] I
do |
where \y
A = d(zf—f—j) [7:13] |
Now let ‘[
i i
5 ran i
B - 4;4»15 t o +bap g [7:14] N‘
i | : e !
so that
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4
cdBodb , Lo b)) [7:15]
do
then
-B -B
A = C@ - £ @Bzda— [7:16]
o
Now

"6—0 - 40(2'5. fo- jo) ) a’o(fo_ﬁo> = =3 L7317

so that if 0<Y <1 4w can only be real if C 1is zero (the

complementary function is complex) and we have indeed found

all the real solutions. If Y = 0

ur = C(/_.(,.ID—./. ) _(,_L{.I{T-»-)(doaé/ta“f"*" > [7:18]

-is always..complex and é‘ is the-only real solution. And if

Y o= 1
“wr :'”Co—(l-{r.oww) "ﬁ("’&o—‘f""%"m&' +al>w¢na'+-~-) Lizipl

is always complex if a, %ﬁ +a, # 0 implying that j? is

- 62 -




Fig. 2 The map taking initial values of A;
on one side of corotation (or a critical
layer) to final values on the other

side maps the Riemann spherg into

itself as shown. The.shaded

hemisphere maps to the -

shaded disc.

n
L=

91(90‘ fo) <0A 91(go'fo)

See appendix C

Facing page 63
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the only real solution, but if a .,{,; + a = 0, ;‘ is real
o 1
for all real values of C and we deduce that in this special

case all solutions real on one side of corotation are real

on the other side as well. Because

abva, = afaif-g)rati-f-g)

2 [7:20]

"%,

I

the condition for this special case toioccur is (in accord
with the simple discussion of the limit ) —> 1) that the
slope of the attractor vanish at the corotation point.

Some of these results and those of the pfevious
section can be given an interesting and useful interpreta-
tion if we consider the map which takes an initial value of
g at a point on one side of the corotation point to the
corresponding final value of 5— at a point on the other
side. Because this map from Ekﬁ;)to-ﬁ(ha> is induced by a
linear endomorphism of Q:z it must be a bilinear transforma-
tion. Thus the real axis will be mapped into some circle
which can intersect the real axis of the target space in
0,1,2 or co points. If we consider the above results and
appeal to continuity, we see that the: situation can be
summarised by the following diagram (see fig.2).

However the important point in many applications is

that if we know the form of the functions j' and\? (which

- 63 -
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is a simple algebraic problem) we can often use elementary
methods of the qualitative theory of differential equations
to sketch the solutions which are real on both sides of

corotation and constrain their possible boundary values.

8 Double Neutral Modes

In the previous two sections I have shown that
singular neutral modes can occur if 1ZL £ 1/4 and have
obtained certain information about themn. In this section I
examine the other possible limiting form of unstable mode,
the double neutral mode, and attempt fo obtain similar

results.

A double neutral mode is 2 solution of the

differential equation

;’ = A[ﬂ,t«));z-l' B(q,w)g + C(-’e.w) ', [8:1]

on the interval [4a, 4] with suitable “dboundary conditions
which is non-singular and has multiplicity two; thus it

also satisfies the variational equation ==

22) 2 24 i, BB &y 28 :
(DTJ Bwﬁ " 5’[);+Dw +(Z%};+B)zw o2

with

25 = o Y= a4 [8:3]
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(assuming the boundary conditions not to depend on the
frequency; see section 10 for an extension to more general
conditions) solving which we obtain as the necessary and

sufficient condition for a mode to be a double neutral mode

v (2A ¢ +B) ]
Q0 = (a& 2+BB§+ >€f dr  [8:4]

It follows that on a double neutral mode the

expression

2A =%, 2B ¢ 8:
'3605-+5_a3;+ (8251

r )

must change sign. Conversely if this expression>is positive

for some values of 4 and 5’ and negative for others there
will exist, for suitable boundary points and values, solu-
tions which are double neutral modes. The condition that
the above expression change sign is precisely the condition
that the vector field defined ‘by the original equation
should point into both the upper and the loweF hemisphere
when the frequency is made slightly complex (the geometrical
content of this is simply that one has to be éble to move
away from and then back to the real axis); in~other words

it will be satisfied if the generalised Richardson criterion

is violated.

We conclude that Tt <1/4 is the nebessary and




*
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sufficient condition for the existence of both singular
neutral modes and double neutral modesTand that any double

neutral mode must lie in part within the region

?_A§Z+?_E; + 26 < o [8:6]
QW © oW

9 Application to Selfsimilar Flows

Let us now apply these ideas to the study of the

self-similar flows

.}
0. = O< A< 2 [9:1]

(removing a constant of proportionality by an appropriate
choice of length and time scales). These are natural models
to consider because, as well as Simplifying fhe.analysis,
they give good representations of certain astrophysically
important- cases#¥, The case of uniform rotation is
represented by 7\ = 0 and if ?\ > 2 the flows are

&

cntrifugally unstable. In many spiral galaxies the rota-

)

tion law is well represented by ‘A = 1 over a large range in
radius and for a Keplerian disec A =1.5. Let wus also
Supposes that the basic flow is of wuniform density and

pressure. For boundary conditions we require }' to be real

® Except of course at the origin where they are Singular;
for a Physically realistiec model the rotation law should be
modified inside some small core radius so that vL is finite
at the origin. '

- 66 =

if arbitrary real boundary values of ;‘ are allowed (see section 10)
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at some small radius (see next section) and the perturbation
to vanish as L — oo, This gives the simplest realistic
model in which to study the effects of differential rota-
tion. Although the equations ‘are considerably simplified
(both 9 and N vanish) they remain much more complicated
than those of the plane parallel theory . However we can

still apply the general methods developed in the previous
sections (the application of these methods to plane parallel
flows gives some interesting results which are summarised in

appendix A).

With these simplifications equation [2:13] becomes

/

7= Jz?l— {BZJJ - %%Ll +(m-2 &;)(m—%g) —a'zfj [9:2]

but in fact for our purposes it turns out to be better to

use not ;? but 7 = Le; ; this gives

/

' - 2 Ne2 S X .

= = + =2 - O -27Ym-(z-3)y - [9:3]
7 % 7 ,w_{ﬁza =t 7)m-C9)7

> zj
“nx 7

One advantage of studying these self-similar models is that
because the basic flow has no associated length scale we can
always rescale a singular neutral mode so that the corota-
tion point falls at some given radius, say N = 1. Thus it

is only necessary to study the functional form of the

attractor and repeller with the corotation singularity at
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this one point.

These functions, f and ﬂ s are the roots of the

quadratic equation

72[2(2-?\)—%17 t (’M('x\—#) —%JQ’] 4 [%7+/31}l'l,_ %gzjlz

[9:4]

= & 72 = Z§?7 Ca Zf = O

If the corotation point is at =1, o/n, =/méqa-l> and is an
increasing function. Thus for 2 >1 A is a decreasing
function passing through Zero at the outer Lindblad
resonance and 75 is a positive increasing ‘function. If
pc/u)> 1, i.e. if the system has exponential behaviour at
large radii, CT is positive for /t >1, At /L =1 both roots
lie between /2 and m/(z—%), f being the lesser and 6 the
greater. At the outer Lindblad resonance ﬁ = 6@ and
f =/B . Beyond this point 9 is negative. When the
roots are real j: is positive.
Theorem

If;ﬁc/&) > 1 (no sound waves at large radii) and

the roots are real between corotation and the outer Lindblad

resonance and in this region 5(&) > 3(7,> there are no

- 68 -




Fig. 3 The parabola 1 represents the (constant) left hand side

; of equation[9:6]and parabola 2 its (variable)lright hand side.

At corotation (when O = 0) 2 degenerates into the horizontal line 3.

Facing page 69
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singular neutral modes which decay €xponentially as 4 oo
and for which ‘7 is real as %2 = p.

Proof :-

Exponential decay as = oo 'requires 7—>j as Y@ —> oo but
under the hypotheses of the theorem both real solutions are

bounded from above by

.W’L) = {3(') f(ﬂ)} [9:5]

Ish'g R

and from below by 0 (the known form of the two real solu-
tions near r=1 shows this to be initially true and no solu-
tion curve can cross 0 from above or 1% from below). Thus

both real solutions are positive as /%4 — oo whereas 3 is

negative.

It is easy to show that the hypotheses of the
theorem are satisfied if 2>7u;1; ﬁé@)is the larger of the

two values of %» for which

/m_z«z){m (=M1 ) = ﬂ7+m %Hﬁ;?-z [9:6]

and it is sufficient to show (see fig.3) .

hr) % )0-6(0 +0’4 _p(a ) + & 3(1) {/Z>l> [9:7]

or
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hin) m’)x//z“—/)j(f) +mz/xz’—:)zg{/)l—/5’(/zz—/) >0  [9:8]

But

1
2 m '/\

b2 [9:9]
BS gy 2 JO>miy "zl

(221,220, Rs<k)

l Mu-2) = 2* :
= h@) > 2=t [t _)_J{,L_, 4 _z) } [9:10]

Wa-N)|ae-2y 2 (v-2)" _ At
LA R ]
and as’
ISAS2 D (1) 320G, M) 3 N [9:11]
hin) > o (2= 1) [9:12]

This 1is by no means the best possible result;
numerical calculation of f? shows that it is a monotonic
function between corotation and the outer Lindblad resonance
for 2>A >0.13 and better results could be obtained with
other forms of the equation. I conjecture that -the result

holds for 2>\ >0; it seems improbable that a singular

neutral mode exists in a flow so close to uniform rotation
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that A <0.13.

It remains to consider the possibility of double
neutral modes. Using the result at the end of section 4 for

some value of Jt in the range of integration

[

14t 2,2
| - mL]? < L(lzﬂ){f'”—w’»ﬁﬂ [9:13]

o] m* 4 /}z,JLz,

This confines the possible values of @ to a region of the
complex plane which excludes the origin; thus a double
neutral mode must corotate at a point inside the inner
boundary and can not corotateAat infinity (i.e. instability
can not set in through a stationary perturbation). But we

also know from section 8 that such a double neutral mode

must cross the locus

(4
(r-2q)m-t-n) = -gA" a-iifl-%z /AENCEALE

and it is easy to see that it is in consequence also trapped

between 1 and 0.

-Thus there can exist neither Singular neutral modes
nor double neutral modes where ! is real at the inner
boundary and represents an exponentially decaying perturba-
tion at- large vradii. As the generalised Richardson
criterion shows the flow to be stable for sufficiently large

=%
/3 we deduce that the flows JL = X , 1<'A<2 ‘are stable to

perturbations whose character is essentially incompressible.
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But in an astrophysical context the sound speed
will in general be quite 1low, perhaps of order a tenth of
the azimuthal velocity. Thgrefore this result, while
interesting, is largely irrelevant. If ¢ is small the
differential system has oscillatory behaviour outside the
region enclosed by the Lindblad resonances. This has

certain interesting consequences. Let us suppose that the

boundary conditions are
7 =0 2= a, A [9:15]

Then there are many singular neutral modes; for a general
value of p Wwe need only choose one of the two real solu-
tions, integrate away from the corotation point until we
enter an oscillatory region and then locate a or A at one
of the many points where the solution passes through zero.
Having found values of a4 and {~ for which a singular
neutral mode exists we can now ask what happens when we
slightly perturb one of the boundary points.

mLét us define a function A as follows; starting
with 7{ = 0 at a4 we integrate [9:3] along a suitable
contour to 4?, the value of A is then the terminal value of
7. Plainly A is a holomorphic function of QJ,ﬁ , 4 and a
mode corresponds to a zero of A . The behaviour of a mode

when perturbed can be deduced if we know the leading terms

in the Taylor series expansion of Zﬂ; we have
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A~ 2D g, p24 gy +?égﬂ =0 [9:16]
oW 24 2P

But 2A/{- is the final value of »7/, thus a negative, non-

f-

zero real number. And a@6a>must be complex for almost all

modes unless the Richardson number at corotation, Y%, is 0
or 1/4, To see this make a small real change 'in the

frequency; this has two effects, firstly the corotation

point and the two solutions which are real change slightly,
secondly the 'wavelength' in the oscillatory regions is
altered. If the inner boundary point 4 is sufficiently far

away the second effect dominates and the change in A is
equivalent to that produced by a displacement of g . But
this shows, using the results of 8, that ?Aﬁnois non-zero

and complex except when <& is 0 or 1/4 when it is real.

Thus a positive or negative displacement of ‘the outer

boundary will produce a Sw with a negative imaginary part

unless % =0,1/4.

Now if we leave two degrees of freedom (e.g. by
allowing .both boundary points to move, or by letting the
frequency change and one boundary point move) it is possible
to follow a singular neutral mode as the Richardson number
‘R is varied from 0 to 1/4. Because each mode at &5 =0,1/4
results from the confluence of two modes it is possible to

follow one mode to 4. =0 or 1/4 and return following

another. By drawing a few diagrams one sees that by cycling

- 7% ..

R : . 3 .
See equation 5:3,, b is located in an oscillatory region so that the

quadratic on the RHS is positive or ne

gative definite, in this case negative.,




Fig. 4 The neutral curve and the regions of instability in the
'"local Richardson number at corotation' against 'location of the
inner boundary point' plane for one mode: note that this is not the

stability boundary of the flow.

Facing page 74
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K; between 0 and 1/4 any two sSingular neutral modes which
have the same number of nodes (points where Z’ = 0) between
the corotation point and the outer boundary point can be
connected to one another; each cycle changes the number of
nodes between the inner boundary point and corotation by one
(a pole and a zero of one mode come together at the corota-
tion point when %&:: Oit Thus there is really only one such
mode. If we imagine fixing the outer boundary point and
then plotting against fa the locations of the inner boundary
points of all the singular neutral modes which can be
connected as above the result will have the structure of
fig.l4. But this diagram can also be interpreted as showing
the regions of stability and instability of the given mode ;
the boundaries between such regions must consist of points
at which the mode is neutral and we have seen that except
when TR{ =0,1/4 the neutral modes do separate regions of
stability and instability. Because the flow is stable if
%l) 1/4 we deduce that the regions of instability are those
shaded in fig.4.

..Ihe remarkable conclusion is that when ﬁl =0, i.e.
the perturbations are two dimensional and there are no
stabilising radial buoyancy forces, the flow is unstable for
almost all locations of the boundary points provided these
are sufficiently far apart to lie one on each side of the
corotation point and in the oscillatory regions. We can

also give some classification of the modes and make various

’ ST

See appendix C
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predictions about their behaviour under perturbations.

These have been confirmed by some preliminary numerical

work.

Although this argumenf has been presented for one
specific case it is clear that the result is quite general
and that we have effectively proved the following result

A flow is unstable if the boundary conditions are
time-symmetric (see below) and the differential
equation, for some frequency, has a critical layer
with local Richardson number 01;urrounded by two

oscillatory regions containing the boundary

points.

10 Boundary Conditions

These results have been obtained on the assumption
that the boundary conditions require 7 (or ;') to take real
values and it is reasonable to ask if there is any physical
reason . for distinguishing such™ Dboundary conditions.
Examining the definition of ;‘ we see that if it is real the
radial velcocity and pressure perturbations are in quadra-
ture; thus the boundary can do no work on, nor extract any
energy from, the system. This explains the importance of
such conditiens in the theory of *singular neutral modes;
for such modes any physical boundary condition which does
not incorporate an ‘'arrow of time' must be of this form.

These time-symmetric boundary conditions occur frequently;

- 5, =

Indeed for some boundary locations there exist unstable modes for 0£Ri<}.
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they include the rigid and free boundary conditions of
classical hydrodynamics as well as conditions of exponential
decay in some limit or regularity at some point. The one
important case not included is that of a radiation boundary

condition; clearly a condition of 'no incoming wave ehergy'

is not time-symmetric. This is unfortunate because such

boundary conditions are often the most natural ones to
impose. In particular for compressible disec models the
natural boundary conditions are that the solution be regular
at the orjigin and have no energy flux coming in from
infinity.

The above argument explains why in many cases the
boundary values ’of 5. should be real for neutral modes.
However in general this value will depend on the frequency
(as a concrete example consider the boundary conditions
appropriate to a membrane of given density and elasticity)
so that the value of ;‘ Wwill be complex for growing modes.
The boundary conditions can be regarded as descriptions of
the coupling between the perturbations of the fluid system
and. .the..hidden internal modes of some other mechanical
system (for example the vibrations of the membrane). For
most natural systems if the amplitude of the fluid perturba-
tion increases these hidden modes will grow by absorbing
energy from the fluid perturbation; indeed if the boundary
were to feed energy into a growing mode the resulting

instability would be essentially one of the hidden system

- 76 -

i.e. the hidden modes of the boundary are assumed to have positive energy,

of course the fluid modes may have either positive or negative energy.
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rather than of the fluid system (which would now be more

naturally regarded as imposing boundary conditions on the

other; a situation where this is relevant is the analysis of

a model formed by patching together two flows, for example a
differentially rotating disc with the centre replaced by a
uniformly rotating core). Thus most boundary conditions
should absorb energy from growing modes; this determines
the sign of the imaginary part of ;. (which is also that
appropriate to a radiation boundary condition).

In section 4 I showed that if the frequency has a
negative imaginary part (signifying a growing mode) then it
is easy for ;’ to cross the real axis from one hemisphere to
the other in one direction, but difficult (and impossible if
at all points ﬁ1>1/4) to go in the reverse direction. It is
easy to guess (and to verify) that the solutions crossing in
the easy direction correspond to increasing perturbations
driven by an influx of energy through both boundaries. Thus
if the boundary conditions are passive and do not feed
energy to the perturbation the boundary values are either
real or _lie in the hemispheres which it is difficult to
join. It follows that with these very general boundary
conditions the generalised Richardson criterion provides a
sufficient condition for stability and that any double
neutral node must still have some points in the region

[8:6]. Of course hecessity no longer holds; ‘it is intui-

tively reasonable'that allowing energy to leak out of the
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system should make it more stable.

While it is not so easy to extend the other results
some general conclusions can be drawn. There are two
critical parameters which together determine what happens at
the corotation point, the generalised Richardson number R
and the quantity ‘? = j(?o-ﬁ) . In the two wave regions we
can think of the solutions as waves carrying energy towards
and away from the corotation point and define approximate
reflection and transmission coefficients (some care is
needed here because when o is negative the group and phase
velocities of the waves have opposite signs).

If % =0 and «9 2 0 (as is the case in the self-
similar disc models) mny results can be interpreted as
showing that over-reflection occurs for wave packets inci-
dent from outside, i.e. the amplitude of the reflected
packet exceeds that of the incident. If % =0 and g} < o
over-reflection occurs for packets incidént from inside.
Thus the .corotation point can act as an amplifier of
acoustic waves; and if we introduce sufficient positive
feedback by reflecting some of the amplified waves back it
can act as an oscillator. This offers a physical explana-
tion of the results of section 9 and indicates that at least
one of the boundary conditions can be relaxed to a radiation
boundary conditiqn without changing the conclusion.

The phenomenon of over-reflection. was first

discovered by Miles (1957) and Ribner (1957) while studying

- 78 -

But only in this weak sense; there can ewist 'negative energy modes'

which only grow if the boundaries absorb energy (e.3. the solutions of section Ly .
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the interaction of sound waves with a vortex sheet; it has
since been demonstrated for internal gravity waves by Jones
(1968), for Rossby waves by Dickinson and Clare (1973) and
for magneto-acoustic waves by fejer (1963). An excellent
account is that given by Acheson (1976) which contains an
extensive bibliography and a lucid account of the 'negative
energy' aspect.

Physically there are two effects involved; firstly
the presence of waves inside corotation reduces the total

energy of the system whereas outside they increase it,
secondly they can cause permanent changes of order-the wave
amplitude squared in the mean flow near the radius of
corotation (the generalised Charney-Drazin theorem, (Andrews
and MecIntyre (1978)), shows that the waves only induce
transient mean flow changes at other radii). In the absence
of the second effect energy conservation shows that over-
reflection must occur. However in general the critical

layer absorption or emission is the dominant effect; this

is controlled by the parameters 7& and gy

11 Exact Solutions

An estimate of the magnitude of the first effect
and a confirmation of the general theory is provided by
certain exact solutions. As noted in section 2 the

differential system [2:10] has singular points at zero,

infinity and the cdrotation points where ¢ = 0. However if
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at a corotation point fQ = 0 and j% = 0 that Singularity is

removable; this condition requires that either

t, =0 o (/flwo)/ = g [11:1]

or

, /
“/Zo/ = czlg/ & (@) =0 [11:2]

If [11:1] or [11:2] holds globally the corotation
Singularities aré always removable and the only singular
points are zero and infinity. In general these are
irregular but there are two families of self-similar models
for which zero is a regular singular point: in these cases
the general solution to the perturbation equations can be
found in terms of Whittaker functions.

Case I

- =X b=
If L = = and C =(CW then the

(o]

general solution is ( x = «z> )

- (Raym B 2
Y = Jl{’/\(z. })md% = O‘M}
[11:3]
°1'/L = —é{ﬁ(z-%iﬁj + '/\(Z"/\>M0’M} |
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where 4w~ is any solution of the confluent hypergeometric
equation
4 : P 2 _ 2
dw :‘E{G_’_ _ mii26 'A)/c,} [11:4]
J,DCL l>\2. Col. xl
Case 11 |

A \
If (2 =, /2 =N and C =(C A the general ‘

solution is

= 1 faty: 2N’
NI A A -

[11:5] f

ho o= -i {?2(1—7\)&3‘_5 + M2 Dm 0""'}

where 4w and >x are as in case 1I.

r

Either by a simple WKBJ approximation or by w“
consideration of the known asymptotic forms of Whittaker i
functions these solutions can be used to estimate the ratio

of the amplitude of the reflected to that of the

incident
wave packet: ‘both methods give results of order
- %‘FFQ(H—?-;&) + ﬁﬁ_ﬂ)]

| 4 c 4 m Co [11:6]

Il
so that maximum over-reflection occurs when




!
|
1
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m' e = 2(2-2) + A’ [11:7]
&
and gives an amplification of
_ %7_\71‘/1(1- A) + Ny
& [11:8]

The effect vanishes as the discs tend towards uniform rota-
tion and becomes very efficient as they teﬁd towards
irrotational ( A =2) dises; for a keplerian disc the
maximum effect is about 0.015

This is quite small. However the main reason for
this 1is the width of the 'barrier! through which the
perturbation has to tunnel and if this could be reduced by
making the disc slightly self-gravitating the effect might
be considerably increased; also when the second process
operates and energy is extracted from the mean flow at the
corotation radius, because the perturbation only has to
tunnel half therdistance, an order of magnitude estimate is
that the amplification will be about the square root of that

due to the first process. This suggests that amplifications

of a few percent are quite possible in Keplerian discs.




e e e e e e

- Conclusions - 83

12 Conclusions

In compressible discs sound waves can be reflected
with an amplification of a few percent from regions where

the local Richardson number is zero, but in general only

from one side. If this side faces the centre of the disec

the amplified wave will be reflected back and an instability

will result. It is probable that self-gravity of the disec

enhances this effect*. The resulting unstable mode probably

grows until the non-linear interaction between itself and

other modes can feed energy into modes of lower amplitude at

a rate equal to that at which it is absorbing energy from

the mean flow. The prospect arises of an accretion disc

which is not turbulent in the usual sense, but in which the

angular momentum is transported by a stochastic spectrum of

such weakly non-linear sound waves, rather as in the oceans

horizontal momentum is transported vertically by internal

gravity waves (Miller (1976)).

In the case of subsonic (or incompressible)

bd Actually that part of the analysis which depends only on

the two-dimensionality and linearity of the problem can be
carried out even for a self-gravitiating disc. A highly
non-linear integro-differential equation can be found for a
projective variable and if the boundary conditions require
this variable to be real there are still only 0,1,2 or oo
Solutions with this property. However the non-local nature
of the relation between the potential and the density,
reflected in the fact that the equation is integro-differen-
tial rather than differential, appears to prevent any
further progress. I intend to investigate the consequences

of using a 1local approximation for the potential (as in
spiral density wave theory).

- 83 -




Fig. 5 By the substitution.«n =,ei§” one obtains an equTtion in
which the attractor‘ﬁ is tangent to the curve 72 =0n/qgia5> at
corotation and thus can not have a vanishing slope unless there is
an extremum in ﬁi&% at ﬁhat radius. But when the slope of the
attréctor is non—zero the only possible singular neutral mode
(shown dotted) passes through f: at corotation. When the flow 1is
subsonic f is bounded away from zero; the required result follows

tonic function
from the fact thatfﬁ and 3 are seperated by a mono

(namely m /( ﬁ,’i’ Wo) ) -

=0 o=o0
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axisymmetric systems it is easy to show that if the
perturbations are two-dimensional and the boundaries are
rigid concentric cylinders a necessary condition for the
existence of a singular heutral méde is an extremum in a%/YZ
if the flow is isentropic and an extremum in a%Yf if it is
isobariec. The proof is virtually identical to that of the
corresponding result in the plane parallel case (see
appendix A) and should be evident from fig. 5. One can also
show that if there is a singular neutral mode in such a flow
and it only corotates at one radius, then the extremum must
be a maximum in [U,,ﬁi'—zw/ml at the corotation radius. In
the absence of a semicircle theorem these results do not
yield simple stability results, but I think it very probable
that as in the case of Plane parallel flows the necessary
conditions for the existence of singular neutral modes are
also necessary conditions for instability. In. general
dynamical instability in the Subsonic case appears to
require a fairly sharp maximum in the vorticity (so that the
Kelvin-Helmholtz instability could be said to be the generic
dynamical instability of subsonic flows). However it seems
to be iﬁpossible to obtain simple general results for cases
where the locél Richardson number does not vanish
identically. In the study of specific models, as shown by
the exaaple of section 2:10, my methods can be quite power-
ful; that example shows that,'at‘least in a uniform density

and pressure subsonic disc with a rotation law of the
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Keplerian type, allowing the perturbations to have a three-

dimensional structure has no destabilising effect.

I end with a summary of the results established in this chapter.
(1) A sufficient condition for the stability of an axisymmetric
flow with passive boundary conditions is that the local Richardson number
(defined by equation 4:7) should everywhere exceed 1/4.
(2) Without further restricting the boundary conditions no stronger
result can be obtained.
(3) There is a geometric technique which can be used to describe
the neutral modes (especially the singular neutral modes).
(4) The flows {L= Jz,-m (1<2<2) with uniform density and pressure,
a passive inner boundary and an outer boundary condition of exponential
decay as 2 >ocoare stable to perturbations which do not represent sound
waves at large radii.
(5) These flows, when sufficieﬁtly compressible to support sound
waves. and with sufficiently separated reflecting boundaries, can be
unstable if O<Ri <1/4 and are unstable if Ri=0 (except perhaps for a
discrete set of boundary locations).
(6) There exist two families of self-similar flows for which the

solutions of the perturbation equations can be expressed in terms of

Whittaker functions.
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1 Introduction

While working on the analytic theory described in
the last chapter I considered the possibility of numerically
integrating the linearized perturbation equations with the
viscous terms retained. This required the solution of a
problem of the Orr-Sommerfeld type, a boundary value problem
in which the differential system has solutions with widely
differing growth rates (corresponding to the presence of two
scales, the viscous and the dynamical, in the problem).
Such problems areinatoriously hard to solve numerically (for
a general introduction to the earlier literature see the
review by J.M.Gersting and D.F.Jankowski (1972)). The
methods used can be divided into two categories. Firstly
there are those which seek to determine the entire solution
at once, either by using matrix methods to solve a finite
difference scheme or by determining the coefficients in some
expanéion'of the solution. Secondly there are the shooting
methods which attempt to solve the boundary value problem by
initial Value methods. The methods in the second category
have the advantage of simplicity and small storage require-
ments although on general grounds the methods in the first
category should be slightly more efficient. 1 analysed
these shooting methods and found a unifying geometrical
interpretation of the principal methods, those of

orthonormalisation and invariant imbedding, which indicates

- 89 -
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a slight superiority for the method of orthonormalisation in

difficult cases.
2 The Problem

The generic problem consists of a system of
ordinary differential equations of order 9, , linear and
depending analytically on some parameter 1m (if there is

more than one parameter 4» should be interpreted as a

vector);

d_j% y = Flx 1) Y

13 X —> D(?L) e V [2:1]
F i o(np) > FOup)e Z(V,V)
x e [x.%]
where V is a vector space of dimension M (we will normally
consider V as a vector space over C , but the application
to real vector spaces is obvious) and [21,2%] is a closed

interval of the real 1line. Integration of this system

defines a flow on V , 1i.e. a map
Rern,e): V>V [2:2]

such that

R ¢oe,) 4 04) = Y (%) [2:3]
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Because the system is linear the map R is a linear map.

The system 1is subject to “k independent linear
/
homogeneous boundary conditions at >, and to %1 = n-«%R at

2# That is there exist linearly independent subsets

{“Lgizl“"k .{/%};=%~k, L2:4)]

/
of the dual space V’ and the boundary conditions are

“;(fj()(a)) = ﬂj (Zj(z”» = o [2:5]
) ’
(ol gl R
It is convenient to introduce bases for the annihilators of

the subspaces spanned by these sets, i.e. linearly indepen-

dent sets of vectors in'V

3 TRV L1 26

such that

®,(2;) = o0 = /34‘(%-) [2:7]
F R R )

Then any solution of the system satisfying both sets of

boundary conditions will have for its value at 2, a linear

combination of the “1 and at DQ#a.linear combination of the

{-.

4
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3 Simple Shooting

This observation forms the basis of the simple
shooting method; if the value of the solution at >, is a
linear combination of the Q,, then because of the linearity

of K its value at , will be the same linear combination of

the vectors

[ Renon)al, (3:1]

4=I“‘%/

and this will be expressible as a linear combination of the |

{q iff the exterior product (essentially a deterﬁinant)

D= Rewx)ah o ARCa.xa, d b4 ady, (3121
is zero. The simple shooting method consists of choosing k/
sets of initial values satisfying the boundary conditions at
x, (the a;), advancing them to 2y by any initial value
method and then evaluating the determinant D . If the
differential system is non-singular in the range [2;,2@] ])
is a holgmorphic function of the parameter 4» and its zeros
may be found b& any of the standard methods.

This simple scheme breaks down when applied to
problems of the Orr-Sommerfeld type. Although the initial

vectors A. are linearly indépendent, the final vectors may

well be nearly dependent because the growth of some compo-
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nents of the solution is so extreme as to swamp the less
rapidly growing components. A partial cure is to match at

some point X%'in the middle of the range and set

D= RCwxa A-.. AR ,x,w)avﬁ,/\ RG({,,’(,,)J‘-A [3:3]
- AR(7C(/'>(M>J/—~{{ .

4 The Method of Orthonormalisation

A much better solution is the method of
orthonormalisation (see e.g. Conte (1966)){ In this the
range of integration is divided ‘into a number of subranges.
As in the simple shooting method a set of \&f vectors is
advanced from %, to 24 by integration across each subrange.
However at the end of each subrange the ‘&/ vectors are
orthonormalised (say by the Gram-Schmidt process) with
respect to some arbitrary inner product on V . This ensures
that the vectors remain independent and that the growth of
one solution does not swamp the others (or cause overflow
problems! Y As before a determinant U can be formed,
either at 'x#_or at some internal matching point JQJ the
zeros of which identify non-trivial solutions of the
boundary value’problem. It may not however be a holomorphic
function of the parameter; in particulgr if the quadratic
form used to define the inner product is a positive definite

Hermitean one it will not be holomorphic because of the

occurence of complex conjugate quantities in the expression

- 93 =

T- see also Kaplan's method as described in Betchov and Criminale,

Stability of Parallel Flows, Academic Press (1967), p83-91.
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for the inner product. For this reason the use of an
orthogonal form (even though it is indefinite) has been
recommended by some authors (starting with Gary and Helgason
(1970)). It is certéinly true that the determinant found in
this way will be locally holomorphic, but because of the
different branches of the Square root which may be taken
when normalising the region of holomorphy tends to be very
small¥, Thus it is impossible to use global =zero finding
methods based on the principle of the argument.

By contrast if the inner product is based on a
Hermitian form, not only do we have the security of a posi-
tive definite inner product, but it is also easy to see that
the determinant formed is the product of the determinant
that we would have obtained using the simpl% shooting method
with exact arithmetiec and a positive real function. Thus
the determinant is sSimply a rescaled vversion‘ of the
determinant produced by the simple method, and indeed if
some information is retained from the orthonormalisations it
is easy to calculate the Sscaling. But this is not necessary
if we wish to apply the principle of the argument, for the
arguments of the two determinants agree and this very power-
ful and useful method can be applied directly (Appendix B

describes a FORTRAN package for just such an application).

In fact it is not hard to see from Jensen's formula that

no method which controls the growth can return a globally
holomorphic determinant.

- 94 -
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5 Invariant Imbedding

Consideration of this method shows clearly that the
dbject of importance is not the particular set of vectors
being advanced, but the linear Ssubspace that they span.
This suggests that it would be better to formulate the

problem and its solution in as basis independent a way as

possible.

The differential system induces a flow, not only on
the  space V’ . but also on all the geometric objects

associated with V " In particular it induces a flow on the

Grassmanians ?ﬁ(V) ( jk(l/) is defined as the set of
‘/{-dimensional linear subspaces of \/ ; for example ﬁL[RB)
3

is the set of all planes through the origin of IR ). The

boundary conditions can be stated as

U("UG ad = Sivm, (4{') € ﬁ,&,/V)
[5:1]

_ D.(x{r) e B = S%""(*j)é ?Ié[V) -

so that if the induced flow on g{(V) is denoted K, the
R

condition for a non-trivial solution is

R, Coxy@a)nB £ o [5:2]

or if matching at some intermediate point,




|
i
|
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Rk,(xuoch)(d/)n Rﬁ (>c+,>cm>(‘8) £ o [5:3]

Clearly this is a minimal formulation of the problem, all
arbitrary factors having been removed. Actually this

minimality is not entirely desirable. The additional

information retained in the method of orthonormalisations

(the orientation of the basis defining the subspace) greatly
assists the location of solutions by enabling one‘to use the
principle of the argument.

For purposes of calculation this method can only be
used if we have some representation of elements of 7Q/lf)and
of the flow Rk‘ But this is not difficult. :?ﬁ(l/) is a
manifold (of dimension %/ﬂ-\&):'féﬁ,) and there exist certain
natural parametrizations of j%g{)by linear maps which for
purposes of calculation may be identified with ma;rices.

These natural parametrizations may be defined as

follows. Let H” € 1?k(v> and let LLL be a subspace

complementary to uq in V, i.e.

vV o= U eU, . [5:4]
o (U,) = Ao (U,) = 4

Now let &%{2f(0%,“;> and consider the map

O<i——>7zaf/k(0<)={u@au:ueu,§cV | [5:5]

- 96 -
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This 1is easily seen to be a parametrization of an open
neighbourhood of IL, in%{[/)by elements of ,,Z(M,,, H,L> which
can be identified (though non-canonically) with G:*k/. And
clearly the set of such parametrizations (or rather their
inverse charts) constitute an atlas for the manifold %[V)

Having parametrized ?k[V) (or at 1least an open
subset of it) the flow kk, defines and is defined by a
system of differential equations in the parametrization
coordinates.

This system is easily determined from the original
equation. The splitting of V induces a splitting of l;

into four linear maps which we denote f},B ,C,]> to conform

with the standard literature.

Fluoun) = (A +B4) © (cu +Du,)

[5:6]
Vweld, YVuel,
The original differential equation was
27’ = FvJ [5:7]
If
7 = U @ K4 ‘ [5:8]
then




3:5 - Invariant Imbedding - 98

wolw'a +0d') = (Au+Buu) @ (cu +)ou,L>

= 4’ = Aa +Bxu
, : p [5:9]
XM = Cu +D0U —xi

= Cu +DuM —XAM - xBxU
If the second equation is to hold for all initial values of

U s

/
K = C + Dx -wA -xBx [5:10]

which is the required equation determining the flow on ;&(K}
In the particular case when V/ is of even dimension and
'k = Mm/2 this 1is the central equation of those methods
generally known as Ricatti or invariant imbeddihg methods
(see e.g. Curl & Graebel (1972), Scott (1973), Davey
(1977))T An advantage of this derivation is that the exten-
sion to cases of arbitrary dimensionality is obvious, but
equally as important is the conceptual gain from having  a
clear geometric formulation of the method. For instance it
is well known that singularities may be encountgred in the
integration of the Ricatti equation and that the solution is
to change to another set of variables which satisfy a
related Ricatti equation. From the geometric point of view
it is clear that this behaviour is an essential consequence
of the fact that the manifold v?{V)is not homeomorphic to an

k4’
open subset of @: " and so cannot be covered by any one

- 98 -

1‘ also D.M.Sloan, J.Comp.Phys.24,320(1977).
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parametrization; whenever in the integration we move out of

the region covered by our chart we must switch to another |
chart in the atlas which does cover the region we are ‘_?
éntering. This faises the intereéting question of how many
such charts are needed to form a complete atlas. If it is w‘ ﬂ

confined to natural charts (as defined above and used in the i M

required (in contradiction to the impression often given in

i the literature that two will suffice). For given any ~k

natural charts on cﬁ{%}defined by the decompositions of l/, %W

| V = M,@a, = = e [5:11] i

choose one vector from each of the complementary subspaces il

i
- —

standard methods) it is easy to see that at least 1% + 1 are |
Mq.. . & . H% and if necessary adjoin to this set such ﬂ
additional arbitrary vectors that the subspace of \/ it | E
' ‘ !
generates is of dimension vk. Then this subspace is an ele- | |

ment of /éy)that does not belong to any of the coordinate i

domains of the given ﬁ, charts. |

6 Other Methods i

This geometric point of view can also be used to
describe many alternative integration techniques and
suggests several new ones. By integrating in the dual Space

b’/we get the method of adjoints. The simple shooting

method and the method of orthonormalisation can be regarded

|
1
i
1
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as an integration in ka % . And the method proposed by
: o . L Ak

Davey in a recent preprint !involves integrating in /\ V . A
novel method which is not very efficient, but is reliable
and easy to program, cohsists of ihtegrating in the space of
sets of &, orthogonal vectors.

This is obtained from the simple shooting method by
a slight modification of the derivative subroutine; instead

of integrating

[6:1]

ooy

ok

we take an initial set of orthonormal vectors and integrate

/

+
% = Oy F y,

K= 1~ 4

In other words we only keep that component of each deriva-
tive which is perpendicular to the Subspace spanned by the
vectors. This méans that the vectors remain orthonormal and
only rotate as much as is necessary for them to stay in the
correct subspace.

It should perhaps be pointed out thatv the non-

linear differential equations which arise in these methods

- 100 -

-t Now published in J.Comp.Phys.30,137(1979).

/\ denotes the exterior or wedge product.
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are generally quite stiff so that it may in certain cases be
more efficient to use an initial value method designed for
such equations. In general because of its robustness and
economy I would recommend the method of brthonormalisations
(using a Hermitian form) combined with an automated =zero
finder based on the principle of thé argument (see Appendix

B) as the best shooting method for this problem.

= 107 =
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In this appendix I apply the ideas developed in
chapter 2 to plane parallel flows. As well as being a good
illustration of these ideas the results obtained are in some
cases stronger than those obtained by classical means (for
an account of which see Drazin and Howard (1966)). The
equations for plane parallel flow which correspond to equa-
tions [2:10] and [2:13] of chapter 2 must first be obtained.

If the unperturbed basic flow is
M'o = [/(pc) e [A:1]

(I take the basic flow parallel to ev rather than &. for

consistency with the axisymmetric case) and the velocity

perturbation is

~ - [A:2]

(by Sduire's theorem (Squire (1933)) we need only consider
two dimensional perturbations) the equations of the 1linear
system are (Fourier decomposing in t and v ”

Yy b)) = g0 ei(wt'“v) [A:3]

- 103 -
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104
! .
‘9 -y th /o' _ o
4 vELM d’u+?:(ﬂ' cl)
[A:4]
/ ; N
fo=-dp riplf-o) u
‘ / N »/“')J
-0 - - 2 No= tefle Lt
[a“’ V.9 Polle ElE op
If we now define
;— = _ i;k; [A:5]
4 M

the equation analogous to [2:13] is | N

= __(g"{_ g); +E'——{N1—0}(I+-?:> +0(;'(0(}-+{/’)} [A:6]

Examining the imaginary part of th{s for real

values of ;* we find

(;I)‘i = %z {NZ+IO‘IZ(I+§,:> +o(§(¢<;+k/’)} [A:7]

(the subscripts M and X, denote real and imaginary parts).

Using the argument- of section 2:4 it follows that a

- 104 -

This can also be obta]_'.ned from 2:13 in the limit A -> oe
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with passive boundary conditions

sufficient condition for stabilityxis that the Richardson

number
R = N/(v)* [A:8]

should everywhere exceed 1/4 (it is interesting that this
method of proof handles the compressible case as easily as
the incompressible (compare Chimonas (1970)).

An important result in the theory of plane parallel
flows is the semicircle theorem of Howard (1961); the argu-
ment of section 2:4 - can also be adapted to prove this
theorem.

Theorem

The frequency a;:a%gniq% of any unstable mode of
statically stable
a plane parallelelow between rigid boundaries lies in the

semicircle having as diameter the range of N\/ in the basic

flow.

Proof

If in equation [A:6] we substitute 7 =0';‘ we

obtain

/

7 =-(%/+_i§)7 + Voot s Zl(o(l/o*’—z'—z) [A:9]

Examining the imaginary part of this on the great circle

defined by the real values of ﬂz we find

- 105 -
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(1),

'205102[’+ ay’ [A:10]
lo14
so that if the bouhdary conditions require 7 to be real a
necessary condition for instability is that 0, should change
sign (a result known to Rayleigh). However the only natural
boundary conditions of this form are those which require
%’=O or oo ; from now on I will assume that the boundaries
are rigid and the boundary conditions are 7 =5‘=oo. If we
examine the vector field on all the circles passing through
O and ©© we obtain a much stronger result. Multiplying 7

209 T
by a pure phase,ﬂ3=e 7 y We obtain

' / % 3 200
Bom (B2 v () ()Y
and thus for real %

, ()0_'){ = —[2,(0”8‘,"0)#(0”61"9); - Nlm,z&:f _

[A:12]
0(2%7‘[ PEY PR /O’/L' .
- == |2(ve oe ), — Y1 sm29
Jol* ( )"( )‘ xic? ——l

' 2
It follcws that if N >0 (so that the flow is statically
stable) ¢ is excluded from the region indicated in fig. A1
as this holds for all values of 29 we sSee that W must 1lie

in the semicircle having as'diameter the range of Y .

- 106 -
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This 1is the semicircle theorem of Howard (for
compressible flows); an important consequence is that for
Plane parallel flow between rigid boundaries instability can
ohly set in through a singular neutral mode (Miles (1961)).

The only condition for stability proved so far is
the Richardson criterion; the main purpose of the following
lemma is to extend that result (in the sense of section 2:5)
to flows without stratification.

Lemma

A plane parallel flow of an incompressible
heterogeneous fluid with rigid boundaries has no singular
neutral modes if the velocity profile is monotonic (\/;O),
the product ﬁvl increases in modulus and @zNz decreases

1/ La? /
(aV'I30 & (NB®)<0) or vice versa, and the stratification is
statically stable (N 0).
Proof
T4 IR
Suppose |2 V(30 and (N/g)go (if the inequalities are
reversed we simply invert the coordinate system). Because

/
V #0 there can only be one critical layer, say at x = ¢,

between the boundary points > = @w and = bu The differen-

tial equation is

/

P fr et )

or setting 42 = {oo ;
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Fig. A2 Graphical solution of equation A;15

’}ZI =f-é—_{/§z[/\/1*0'z) ¥ a‘ZC‘X’*Z"‘ﬁv‘)} [A:14]

with boundary conditions 7 =o° at 2= a, 4.

/ From the general theory of singular neutral modes
developed in sections 2:6 and 2:7 we know that there are
only two solutions of [A:14] which could be singular neutral
modes and that their behaviour can be partially determined

by studying the functions >¢ and AN These are the
( )

roots of the quadratic equation in 2

| X ()7 +LV) ==p (N~ ") [A:15]

' the identification being that indicated in fig. A2 (j is ‘ }

defined to be attractive as one integrates towards the

critical 1layer).

As one integrates from ¢ towards 4r the RHS of

equation [A:15] never falls below its initial value at ¢

and |£V'| increases. Thus ]3(1)] also increases initially
never falling below its value at ¢ and the roots fGO and ‘
3(») are real between ¢ and . It follows, using the
information on the Slopes of the two solutions at the

critical layer obtained in section 2:7, that neither solu-

tion can reach infinity and satisfy the boundary condition

at 4. Thus there can be no singular neutral mode.

| - 108 -
Facing page 108 .
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Given velocity and density profiles satisfying the
hypotheses of the lemma one can construct a sequence of
models by increasing the strength of the gravitational field
until the flow's stability is réssured by the Richardson
criterion. It then follows that because there are no
singular neutral modes at any point on the sequence all the
models are stable no matter how feeble the buoyancy effects;
indeed going to the other end of the sequence we find that
with no gravity operative a heterogeneous flow with a
monotonic velocity profile is stable if (ﬁ:V{);éo. The
stability of the intermediate models is interesting as the
only example known to me of a stability result holding for a
fairly general class of stratified flowsT The particular
hypotheses of the lemma were chosen to facilitate the proof;
in general given a specific velocity profile and some
information about the stratification a 1little sketching of
f— and 9 will suggest much sharper results. The effects of
compressibility can be included in the analysis without much
trouble; as long as the velocity differences in ‘the basic
flow remain below the sound speed they tend to be
stabilising, but if the flow is sSupersonic the possibility
of sound waves ieads to a radical change in the nature of
the problem.

I have shown that when there is no gravity a

: /
heterogeneous incompresible flow with //g V')_7l:0 and a

monotonic velocity profile is stable. This result (without

- 109 -
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the restriction to monotonic velocity profiles) is due to
Synge (1933) and is a particular case of a general result on
flows where the local Richardson number vanishes everywhere.
This can happen for two reasons; either there is no gravity

and the flow is isobaric or the flow is isentropic.

NG = ke (B L
plE o R

[A:16]
/

7t a4 -

In both cases the vanishing of ﬁz means that instead of
there being two solutions taking real values on both sides
of a critical layer there is only one unless the slope of

the attractor vanishes at the critical layer (in which case

the singularity is removable).

In the isobaric case [A:6] becomes

/

s - /_./5_5» +0_';i(x;(x;+\/') - 0—!(14-?{)% [A:17]
or setting 7 = {00;

N / 2, 1 ¢
s e wy + V') - +7 E [A:18]
[ fo ZrMZ(7 RV) — e+ L)
and in the isentropic case
/

;': +/_§_ -+(';{o<§(o<§+vl)'0'z(:+_§f)§ [A:19]

- 110 -
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or setting ‘7 = ;‘/f—,

’
1= Elqer ) - S(E L)) we
o 7 /o : /3 c?
Examining these equations we see that at the critical layer
5(%) is tangent to Y =0 and 9(%) to 7Z=/fﬂ|/l; thus the slope
of the attractor at the critical layer is determined by that
of the product or quotient of the vorticity and the density
according as the flow is isobaricvor isentropic. We can now

prove what is probably the most general form of Rayleigh's

inflection point theoremT but first we need the following

lemma.

Lemma

If the maximum velocity difference between two
parts of the basic flow is less than the sound speed, then a
necessary condition for the existence of a singular neutral
mode in a plane parallel flow between rigid boundaries of an
isobarie fluid is that there be an extremum in ﬁ\/, and of
an isentropic fluid is that there be an extremum in V;f %
Proof

Let us consider the isobaric case, the proof for
the isentropic cése being essentially identical, and examine
the possibility of a singular neutral modg in a flow where
(@VLY#O. The velocity of the basic flow is the same at each
critical layer so that the sign of VI must alternate at

Successive layers; -as the density is a positive definite

- 111 -
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flows.
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Fig. A3 The possible solution (dashed) and the function ;f .
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function there can not be more than two critical layers
/
without an extremum in ng/ . The hypothesis that the

maximum velocity difference in the basic flow is less than

the minimum sound speed implies

|z
%;Z < 0(2 [A:21]

so that the roots f&Q and 363) are real and finite at all
points in [a , { 1.

Let us consider the possibility that the Singular
neutral mode has one critical layer. Then the values of 7
are real on either side of this layer and we know that there
is only one solution with this property. However it is easy
to see that this solution is always finite and so can not
satisfy the boundary condition 7 =co at either a or 4 (sece
fig. A3). Thus any singular neutral mode must have two
critical layers.

Now consider the case of two critical 1layers in
terms of the map defined at the end of section 2:7. As we
pass the first critical 1layer the real axis and one
hemisphere of the 7 sphere is mapped into a disc in  the
opposite »hemisphere and tangent to the real axis at one

/ /
point. ‘Because the sign of V', and hence of @\/ ’
alternates and the sign of (7% V;)/ is unchanged (by
hypothesis) that of j/ changes; thus at the second critical

layer this hemisphere (and its contained disc) is mapped

- 112 -
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into a disc contained in the first hemisphere. Therefore
the composite mapping obtained by integrating from a to <~
past both critical 1layers takes the real axis and one
hemisphere into a subdisc of itself which in general will
not touch the real axis; the condition for it to do so is
that the solution which is real on both sides of the first
critical layer should also be real on both sides of the
second. Thus if there is a singular neutral mode with two
critical layers the values taken by 7/ must be real between
the critical layers as well as between the boundaries and
the critical 1layers. But it is easy to see that the solu-
tions real about each critical layer are incompatible both
with themselves and with the boundary conditions (see
fig. AL).

Thus there can be no singular neutral modes.

Theorem

If, the maximum velocify difference between two
parts of the basic flow is less than the sound speed, then a
necessary condition for instability in a plane parallel flow
between rigid boundaries of an isobariec fluid is that there
be an extremum ih ﬂbﬂ and of an isentropic fluid is that
there be an extremum in V7ﬁ .
Proof

We construct a series of flows none of‘which can

have a singular neutral mode ahd which link a flow
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satisfying these conditions to one which we know to be
stable. First we connect a heterogeneous flow to a
homogeneous one.
Given an isobaric or iséntropic flow with density
t,n'
f) and velocity profile V; such that(f*V)fO we define
o o 0
,0,/\ =/o7\ and VA as any continuous family of solutions of
0
- /
Vg: g%:ow . Then as A runs from 0 to 1 we obtain a
sequence (more exactly a homotopy) of flows, with density
/a and velocity V& , such that for all )
( +2 0-N ! 3,0,
(B 6) = (£ L7 70)=(%) 20 e

which connects the given flow to a homogeneous one.

Then we 'straighten out' the velocity profile.

Given a velocity profile Vo with \Qﬁ#o we define
V, = (-3)V +72%x [A:23]
Then
/ / n v'/
Vy = (FDV +), V) = (1-DY, [a:24]

so that as A runs from 0 to 1 we have a homotopy carrying
the flow to one with a 1linear velocity profile (plane
Couette flow). In both sequences the sound speed must be

allowed to increase as much as is needed to keep the flows

- 114 -

RIS HBUT MRS %




I
1?
fI

Fig. A5 The attractor (dashed) and a typical solution (dotted)

1 .
when the extremum is (a) a minimum in l/? a%} and (b) a maximum.

Only in the latter case can a solution escape to -infinity on both

sides of the critical layer.

(a)
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subsonic. The above lemma will then show that none of the
intermediate flows can have a singular neutral mode.

It follows from the particular result established
earliér, that a heterogeneous indomnressible isobaric flow

and (fgv')’#o between rigid boundaries
with a monotonic velocity profileAis stable (alternatively
one can use a special argument to prove the stability of
plane Couette flow), that all these flows are stable.

This interesting extension of Rayleigh's inflection
point theorem to compressible isentropic and isobaric flows
appears to be new (though the result for incompressible
isobaric flows was obtained by Synge(1933)). One further
result can be obtained. A necessary condition for the existence of
a singular neﬁtral mode in a subsonic isentropic or isobaric flow
between rigid boundaries is the existence of an extremum in fgi'V’
(and the critical layer of the mode will coincide with the extremum) ;
if the flow is such that /iﬂvlhas only one extremum, the necessary
condition isrthat the extremum be a maximum in /ﬂiVZ/(this is an
analogous extension of Fjortoft's (1950) result). The proof depends
on the fact that if the extremum were a minimum then]ﬁ) would have a
minimum at the critical layer and any solution passing through j” at
that point would, af least on one side, be unable to go to o= but
would cross O and be tfapped by Jf (see fig A5). As all solutions
pass through<ﬁo except for one which passes through ji and is also
trapped (cf. fig A3) it follows that the boundary conditions can not

be satisfied unless the extremum is a maximum,
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Appendix B The BISECT Package 117

This FORTRAN package was written for use in solving
Orr-Sommerfeld type equations by the method of
orthonormalisation. It implements the following algorithm
for finding the zeros of a holomorphic function (or of the
product of a holomorphic function and a positive real func-
tion).

Given the function (defined by the external
COMPLEX#*16 function FCT) and a rectangular region of the
complex plane,

XMIN < x < XMAX, YMIN < y < YMAX

it scans the boundary of this region (using an initial sStep

DX) recording the location of the points at which the argu- -

ment of the function’(normalized to the range +7r. to -m)
jumps between + T and -1 and the direction of the jump.
From this information and Cauchy's principle of the argument
it calculates the number of zeros of the function in the re-
gion., If this 1is non-zero it bisects the region b&
inserting a line joining the mid-points of the t;o longer
sides and scans this 1line. This process of subdivision of
those regions containing zeros is continued NPASS times so
that at the end of the process each zero is located in a

small box.

The process is very robust and works as well on
clustered or multiple zeros as on isolated zeros. Of course
once good approximations have been found to the zeros other

methods (such as the secant method or a modified Newton

- 17 -
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method) with faster convergence can be used, but it is often
surprising how good the approximations have to be before the
local methods can be made to converge. The other great
advantagé of the method in eigenvalue calculations is that
it is exhaustive; it gives a complete list of all the Zeros
in the region investigated with their multiplicities.

This particular implementation is designed on the
assumption that function evaluations are slow and the
general computation expensive. Before each function call it
checks (using the 1local Cambridge routine TMTOGO and the
argument ITIME) whether there is enough time left for the
evaluation; if there is not it dumps out enough information
to restart the search at that point (using an unformatted

write to unit IDUMP). This test can be avoided by giving

IDUMP the value 0.




The following computer output, as well as containing a
complete listing of the BISECT package, is intended to illustrate
its use in a typical example. The first part of the program
(consisting of the subroutines DET, DERIV2, ORTHON and AB4) is the
simplest possible implementation of the method of orfhonormalisation
to solve the eigenvalue problem for plane Poiseuille flow at a
Reynold 's ﬁumber of 104. For this demomnstration the largest
possible step has been taken in the»integrapion routine; in
consequence'although the geﬁeral pattern of the eigenvalues
is correct (the three families in Mack's terminology: Mack (1976) il
J.F.M. 73,497) and the total number is correct the locations

obtained are not exact (except for those relatively isolated

eigenvalues belonging to the family which includes the single

unstable eigenvalue). However this example is intended to

demonstrate the use of the BISECT paékage in locating the

eigenvalues of the discretised problem so that the accuracy of » i

the discretisation is irrelevant.

The program listed was compiled and run (using thé

FORTQ compiler) and produced the appended output in 2mins 4séc of

CPU time. The spurious "=1 zero" (which should canéel oné of its Lf
"neighbours) probably results from one zero lying almost éxactly

on a dividing line. The speed and convenience of the package 1is

evident, particularily when one remembers that all the data

obtained is available to other programs through the dump.




N

IMPLICIT REAL*Q (A-H,0-2)

COMPLEX*16 DET

EXTERNAL DET .

COMMON/PARAMS/CRyC1,sRE

RE=1D4

C%Llﬁ BISECT(0eD091eD09¢=0e7005s0e3D0sDET»1eD—=25105551)
STO

END

0 o0 ANOAND 000

= A0000 00 O

aOo

PRRSLE

e e e ek e

FUNCTION DET(C)
ok i o ek 3ok ok K ok K

A simple tmplementation of the method of orthonormallisation
for plane Poiseullle flowe

IMPLICIT CGMPLEX%16 (A-H,0-2Z)
REAL*8 RE.X,NODE
EXTERNAL DERIV2

DIMENSION Y(8),NODE(11)

DATA NODE/0QeD0Q s0e1D0»0e02D0+0e30D0+064D0,
& 0eSD0s0s6D030e7D0508D0»0e9D0s1D0/

COMMON/PARAMS/CFUDGE »RE

CFUDGE=C

Fudge Yo get parameter {nto common e
Note also tricky use of COMPLEX*16 as equivalent %o -
two REAL*8's in subroutine calls and commone

0O 100 I=1,8

Y{I)=(0eD0s0eDO)
Y{1)=({1D0,0+.D0)
Y{7)=(1D0s0eD0)

Inttlal values

DO 200 I=1,9
CALL ABA(Y»YoNODE(I) s NODE(I+1)3CeDERIV2,16)
CALL ORTHONCLY)

CALL ABA(Y,YoNODE(10),NODE(11)+30,DERIVZ2,16)

CET = Y(1)%Y{6)=-Y(2)#Y(S)

RETURN
END

SUBROUT INE DERIV2{DY.Y,sX)
bk 20 0502 R A3 20K o o s e Al Ak Kol

This cnlculates the derivatives for the two solutionse

st ks s s e i e

g s
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(o} Real arithmetlc i{s used (rather than complex) for speede . | ' |
¢ .

N IMPLICIT REAL*8 (A=H,0-2)
) DIMENSION Y(16)4DY(16) : : O
COMMON/PARAMS/CRs CXs RE & .

an

TIR=1-X*X~CR ‘ . o
T1l=-CI : . Taa
T2R=2-T1R :

T2I=Cl

Y
J

DO 100 I=1,9,8
16=I+5

101 ’ DY(J
}=Y(I)=REA(TIREY(I+5)+T1I%Y(I44)

4
i . & ) ’
1™ 100 DY{I+7 ?)—Y(X+1)+RE*(T1R*Y(I+4)—TII*Y(I#5) : ' O
& ) : =4

c : ' } : ) O
RETURN R C
END

|

1
______________ - AT - e ———— - s ' y

«

/

C
C
C

SUBROUTINE ABA(YS, YEsXSsXESNSTEP,DERIV, N)
C A ok e ol o e e skeok el sl dolok g o e ek kol skt ot e e e g o e e
C
C
C

A slmple Adams—Bashforth integrator (4th order) with a RK startere

IMPLICIY REAL*8 (A-H,0-2Z)
N : DIMENSION Y(lOO)-YS(N)-YE(N)-DY(400)-W(400) £ O
EXTERNAL DERIV =

i X=XS
s DO 100 I=1, O
100 Y(X)=vS{]) -
H=( XE-XS)/DFLCAT(NSTEP) ; .
. HZ=H%+5D0 . g
' H6=H/64D0 i
H24=H6/4.D0 :
) [P1=0 .
N 1P2=N . ’
" IP3=N4N o
IPa=1P34+N -
ITOP=1P3+1

T DO 600 I=1
CALL DERI

200 W(IP&+y

s

3 300 W{1P4+J
ety CALL DE

~, NS TLEAR SO R o e meia e v v R o R B e e ey e g e g

-So""'“’ A‘_,dn- L . ' . ' A
N W !

T S e




L

e

S R = Vol w B I T - T SRS PR PP N B S P I R W e e ~.~\t.}..u-‘~-¢‘. Lo e s el St e i Yo

X=X4+H2

s N N
(J) +HXWIN+Y)
CALL DERIV!W(!P3+1)-W(Ipa+1)-x>
: DO 500 J=1,N

S00 Y(I)I=Y(J)+HOE(DY (J+T=1)+W(I)A+WCI) +WIN+I)I+W(N+JI)+W(IP3+J))
0 CONTINUE

6

C

C We can now start to use the predictor-corrector methode .
C

NEND=NSTEP-3

DO 1600 I=1,NEND

CALL DERIV{DY(IPA+1),Y,sX)

Predlict

[2XaTs]

?.SDI*DY(J+IP¢)—5-9DI*DY(J+lP3)+3.7Dl*DY(J+XP2)

IPA=1PSV

CALL DERIV(DY(IPA+1) sW(1)eX)

Correct

aon 0o

DO 1400 J=1,N .
1400 Y{U)=Y{J)+H24#(9DOXDY{(J+IP4)+19D1%DY(J+IP3)
&=Se DOXDY(JI+IP2I4DY(J+IP1))

C
1600 CONTINUE
C

i DO 1700 I=1,N
1700 YE(I)=Y(1)
C

RETURN
END

SUBROUTINE ORTHON(Y)
e e o RO A R e et okooR A ROk

This orthonormalises the two vectorse

anon ono

IMPLICIT REAL*8 (A-H.0-2Z)

DIMENSION Y(16)

ZIR=0400

DO 100 I=1,8
100 LR=ZR+Y (1)

ZR=1eD0/DSORT

00 101 Y=1,8

Y (1) °
{ZR) k '

e s e e

i
s

k;

0




éol Y(I)=Y(1)%ZR i
o4

ZR=0.D0 Cﬁ

Z1=0.D0 |
£ i DO 200 I=1¢752
ZR=ZR4Y(I)*Y(148)+Y(I4+1)*Y(I+9) i
2 200 Z1=ZI4+Y(I)®XY(I+9)=Y(I+1)%kY(I+8) C“ t

DO 201 I=9,15,2

Y(I)=Y(I)=ZRAY(I~-8B)+2ZI%Y(I-7)

i 201 Y{I+1)=Y(I+1)-ZRXY(I-7)=Z1I%Y(1~-8)
¥ C O
¥ C o
o g - . ZR=0.D0
N i DO 300 I=9,16
g R 300 ZR=ZR+Y (1) *Y(1) oo
- | ZR=1.D0/DSQRT(ZR) .
= DO 301 1=9,16
=i : 301 Y{I)=Y(I)*ZR |
B { R c )
§ c : W
¥ RETURN
2 ~ END
& ] ot g _________________________________________________________________________ <o
» ¢ | |
! SUBROUTINE BISECT(XMINeXMAXs YMIN, YMAXsFCT,DXesNPASS, ITIME, IDUMP) B
| B C Aol Ax e e o ok ok ot ik R ook ool gk e ol ok ok B gl o e ol ke A e ook e ft ook ook B ook o o ok o ok ook ok ek ok o
E . c > - |
= C The region to be searched is specifled by XMIN-YMAX; the functicon i
- ! C by the external CUMPLEX*15 function FCT; DX (s an estimate of the !
§ | C step needed in scanning; NPASS the number of bisectlons; (f IDUMP h . C} {
| {5 Is non-zero the data obtained is dumped to unit IDUMP when less ; . :
g C than ITIME seconds are left before the Job runs out of cpu timee 2 . |
‘ C . . 1
? COMPLEX*16 VERTEX,DCMPLX .
- i REAL#*8 DX sDX0 s XMAX s XMIN, YMAX » YMIN, DREAL sDIMAG ; e
Z LOGICAL FLAG, HCRZ : {
- c . :
B b DIMENSION VERTEX{200)»VARG{200)INDEX(200:4)sMAP(100:4)STACK(S00) ) (}
- & +»BLOCKI(1500),8LOCK2(1232) :
g EXTERNAL FCT
- i ) COMMDN/H[SI/ VARG, STACK, VERTEX m
3 L COMMDN/DB1IS2/ :CDATA(!G).DXOaARGO.NO-Nl-IT-ID. e

) & NVERTyNSTKsNREG, NVERTO s NREGO»

i & IPASS, IREG,FLAG,HORZ, :

A & MAP, INDEX &y |
! EQUIVALENCE(VARG(1)sBLOCK1(1)) e (SCDATA(1)sBLOCKZ(1)) ' : -




' . \
‘ 0 ast it e il s it s bh e [ L R R . GO ey datidey e (e - v o it by we et ' daey oy ! H . Cle T LT O i S A o SN VR

O

CONTINUVE

£
OO0

Define the filrst regtfone

' ' ' O
DO 2 I=1,4 : : ; =k
2 MAP(1,1)=X : 3 :

b AT

-
J
o

Inlttialize the polnters, counter and flage ) . M

| NVERT=5
. NREG=2
A NSTK=1 ) : {
{ IPAS5=0
: FLAG=e TRUE,

PR PR R T

£
ann

Scan the. boundary of the first regione s

DX0=DX
IT=ITIME*38400
@) C 38400 timer units per second!?
| ID=1DUMP
1 INDEX(1,1
i 10 CALL SCAN

NSTK
3,FCT) .
STK
STK

| i 20 CALL scC 2,FCT)

%]
-y
X

. STK
% 30 CALL S

MR . 40  CALL s

G TR I e e gt

Ze ZZ% ZZe ZZe
7]

y . C
% C Iterates
C

2
g j
i 3 IPASS=1PASS+]

j - CALL REDUCE
T IREG=1 ’
b . NVERTO=NVERT : a

NREGO=NNEG '

HORZ=(DIMAG(VERTEX(MAP(1,3)))-DIMAG(VERTEX(MAP(1,1))
i . s °GT e DREAL(VERTEX(MAP(1,2)) )=DREAL (VERTEX(MAP(1,1)
o 50 CALL SUBDIV(IREG,FCT)
E IREG=IREG+]
| . : IF (INEGeLTaNREGO) GO TQ 50
| : IF (IPASS.LT.NPASS) GO TO 3
g : CALL REDUCE
E IF_ (10 oNEe 0) WRITE(ID) BLOCK1,BLOCK2
3 . ; RE TURN
e e o dok \
ENTRY RESUME( IDOLD oIDNEWsNPASS,FCT) . e

)
1))

This enables one to recad in (on untt IDOLD) the data dumped
previously and carry on; having olcd and new units saves copying
or rewinding fflesy the data s chuffled between two filese

|y ) READ{IDOLD) BLOCK1 ,BLOCK2 i ’
| ; ID=IDNEW ‘ _ <
d FLAG=wFALSE, ' : B

annan o
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IF (IPASS.GTe0) GO TO SO
. . IF (N1 «EQe 4) GO TO 100
i IF (N1 «EQs 3) GO TO 10

2) GO TO 30

]
4
o
o
-
m
-~
Z
(o]
°
m
[»]
°

i

J

8]
i
Z
Q

]

t

Y

SUDROUTINE COUNT{N.NZERQ)
o o O OHOK O #OROR ROk

AOHO

This subroutine counts the number of zeros in regfon N - (”

REAL*B DX

DIMENSION S5TACK(S00) sINDEX(200:,4) s MAP{100,4) ,

\ COMMON/BIS1/ VARG(200) »STACK,VERTEX(800 ) O
i : ) COMMON/BIS2/ SCDATA(23),

i & NVERT oNSTKyNREGs NVERTO sNREGO »
; & IPASS, IREG,FLAG,HORZ,

) & MAP,INDEX : . ‘ O

s e e e e
3
o

NV1=MAP(N,1
NV2=MAP{N,2
NV3=MAP(N,3
NVA=MAP(N,4

Ltae

PO
)

| NA1I=INDEX(NV1,1)
bRy N3 1I=INDEX(MV1,2)
NA2=INDEX{(NV1,,3)
NB2=INDEX{NV1,4)
NAZ=INDEX(HNV2,1)
2)
3)
4)

ErEtrigi i el

NB3=INDEX(NV2,
NA4=INDEX(NV3,
NBA=INDEX(NV3,

DT

) c - .
K NZERO=0 v ~

b IF (NA1.EQ.NB1) GO TO 1
s i NEND=NB1-1
# Ty DO 2 I=NA1,NEND ¢
R NZERO=NZERJ+IFIX{SIGN{160sSTACK(I))) . "
& IF {(NA4<.EQeND&4) GO TO 3 :
Lo NEND=NO4~- 1 )
{ DO 4 I=MA&,NEND . fF o
NZERQ= N’ERO+IFIX(SIGN(1-OvSTACK(I)))
IF {NA3.EQ.NB3) GO TO
NEND=NB3-1
DO 6 I=NA3,HEND

' . 6 NZERC=NZEAQ-— IFIX(SIGN(X.O'STACK(I)))
-l S IF (NA2.EQeNB2) GO TO
&) NEND=NB2-1 -
i R . DO &8 I=NAZ2:NEND {
5 ‘ 8 NZERD=NZERO- xex(sxGNtt.o.srACK(x))) i

=N

1
we

2 ' _ 7 RETURN
N . END .
| via [ o —— —————————— v ———— e o e e .t S i -—
: SUBROUT INE INSERT(N1sN2,N3,FCT)
Ng— c e e e o A ek ok siok ook %
C i
C This subrouftine defines a new vertex half wey between vertices N1 and
N M
, DS T : . Co g * \")




C
C
C

Cc

10
101

200
210

N
b s
[

N2 tf one does not already exist 3 {f a new vertex (s created the stack

s

0

nd index are updatede.

COMPLEX¥16 VERTEXsVNSFCT.ZVTEST, DCMPLX

REAL*8 DREAI s DIMAG ;DBLE sDX 9XT 9 XEND» XHALF s XSUP s XINFs XERR

LOGICAL HONZ

EXTERNAL FCT

DIMENSION VLCRTEX(200):VARG(200)INDEX(200+4)eSTACK(500)«MAP(100,4)
& »BLOCK1{1500),0L0CK2(1232)

EQUIVALENCE (VARG(1)sBLOCK1{1))s {SCDATA{1) yBLOCK2(1))>
&{DX,SCDATA(17)) .
COMMON/BIS1/VARG: STACK, VERTEX

COMMON/BIS2/ SCDATA(21) o ITIME, IDUMP,

& NVERT o NSTK,NREGs NVERTO s NREGO »
& IPASS,IREG.FLAGsHORZ,
& MAP,; INDEX

ARG(Z)=ATAN2(SNGL(DIMAG(Z))»SNGL(DREAL(Z)))

VN=(VERTEX(N1)4+VERTEX(N2)) *0.5D0
IF (NVERT<LQaNVENRTO) GO TO 101
NVERT1=NVERT-1
DO 100 [=NVECRTOSNVERT1
earch to see i{f vertex already existse
IF((DREAL(VCERTEX(I)) +sEQsDREAL(VN))eANDe (DIMAG{VERTEX
& (I))sECaDIMAG(VN))) GO TO 800
CONTINUE
N3=NVERT
IF (IDUMP+EQe
CALL TMTOGO(I
IF (1TeGT1TI
WRITE(IDUM
WRITE(H6,9100)
sSToPRP, 3
S A 3 ok Aok
VARG(N3)=ARG{(FCT(VN)}

GO TO 110

)
)
Z) GO 1O 110
)

(o]
T
M
P) BLOCK1,BLOCK2

IH=2

IF {HORZ) IH=0
NSTART=INDEX(N1,IH+1)
NSTOP=INDEX(N1,1It1+2)
NEND=NSTOP-1

N=NSTART

IF (NSTART.EQeNSTOP) GO TO 500

IF (HORZ) XEND=DIMAG{VERTEX(N2))-DIMAG(VERTEX(N1))
IF («NOTeHORZ) XEND=DREAL{(VERTEX(N2))-DREAL(VERTEX(N1})
XHALF=XEND%*0e5D0
DO 200 N=NSTART,NEND
AS = ABS{STACK(N))
IF (AS «GTe XHALF) GO TG 2190

CONTINUE

N=NSTOP

IF (NeEQeNSTART) GO TO 211
XINF = ARS(STACK{(N-1))}

GO TO 212

XINF=000

IF (NeEQ.NSTOP) GO TO 221 4
XSUP = AS
GO TO 222




M

LR NN T

o 0

- e —

NP
N
N s

300

C
500

600
601

XSUP = XEND
CONTINUE
XERR=( XSUP=XINF)*0e2D0
IF (XHALF=-XINFe.LTeXERR) GO TO 300
IF (XSUP-XHALFeLTsXZRR) GO TO 400
GO TO 500,

IF (HORZ) VTEST=VERTEX(N1)+DCMPLX(0eD0,XINF)

IF (+NOToHORZ) VTEST=VERTEX(N1}+DCMPLX(XINFs0eDO)
ARGT=ARG(FCT(VTEST))

CALL LFIT(ARGT,VARG(N3) s XINF s XHALF)

NSTK=NSTK=1
STACK{N-1)=SIGN{STACK(NSTK), STACK (N=1))

IF (ABS{STACKIN—=1))eGTeXHALF) N=N—1

G0 TO 500

IF (HDRZ) VTEST=VERTEX(N1)+DCMPLX(0eDO0OyXSUP)

IF (aNOToHORZ) VTEST=VERTEX{NI)+DCMPLX{XSUPs0eDO)
ARGT=ARG(FCT(VT=ZST))

CALL LFIT(VARG(N3) :ARGT s XHALF 4 XSUP)

NSTK=NSTK=-1

STACK(N)I=SIGN(STACK(NSTK) ,STACK(N))

IF (ABS(STACK({N)) «LTeXHALF) N=N+1

INDEX (N1, It1+2)=N
INDEX({NVERT s IH#1)=N
INDEX(NVERT , IH42)=NSTQP
IF (N «EQe NSTCP) GO TO 601
XHALFS=SNGL ( XHALF)

DO 600 I=N,NFEMD

STACK(I)=STACK( I)-SIGN(XHALFS,STACK(I))
VERTEX(NVERT)=VN
NVERT=NVERT+1
IF (NVERT oLTe 200) RETURN

. e e e X &

WEITE (6,9000)
FORMAT (10X, "WARNING! Attempt
FORMAT (¢ THE END IS MNIGH;
sTOP -
3 g ok ko
N3=1
RET URN
o dc e R Aok
END

fine tco man cese ?)
V)

Yo de verti
DATA DUMPED FROM RgUTINE INSERT")

SUBROUTINE SCAN(MO.N1,FCT)
Sk oK ok A e sk ok ok Sk ot ok
COMPLEX%16 VO,V14,DINRNZ sFCT,VERTEX
REAL®8 X0sX1eXEsXMeDXsDREAL,DIMAG, CDABS
LOGICAL FLAG

EXTERNAL FCT

DIMENSION BLOCK1(1500).0BLOCK2(1232)

EQUIVALENCE (VARG(1) »BLOCK1(1)),(V0,BLAOCK2(1))
COMMON/BIS1/ VARG(200)»STACK(500) s VERTEX(200) i
COMMON/BIS2/ VOsV1IsDIRN,XE»X0sDXs ARGOsNNOsNN1 o ITIME, IDUMP,
& NVERT,NSTK ,NREG, NVERTO yNREGO, ’

& IPASS, IREG+FLAG,HCRZ,

& MAP, INDEX

DATA PIsPI62PI2:PI235sPI43:PI32,P1116/36141593665235987,1e570796
8920094395940 188790:04¢712389,50759587/

\

4
i

B

==
[
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¢

&

ARG(Z)=ATAN2(SNGLIDIMAG(Z) ), SNGL{DREAL(Z)))

IF (FLAG). GO TO 10
FLAG=s TRUE»
IF (NO.NC.NNO.AND.NI.NE.NNX) GO TO 10
ARG1=ARGO
X1=X0
GO TO 300
10 VO=VERTEX(NO)
VI=VERTEX(N1?
NNO=NO
NN1=N1
XE=CDABS(V1-VO0)
DIRN={(V1=VO)/XE
X1=0.D0
DX=DX*0s50D0
IF (VARGI(NO)sEQe10e0) VARGINO)=ARG(FCT(VO))
ARGI=VARG(MNO)
GO TO 300

100 IF (IDUMP.EQe0) GO TO 101

CALL TMTOGO(IT)

IF (ITaGTL.ITIME) GO TO 101
WRITE(IDUMP) BLOCK1,BLOCK2
wpxrc (6,9000)

STOP
t*****

ARGI=ARG(FCT(VO+X1%DIRN))

ADIFF=ARS(ANRG1-ARGO)

IF (ADIFF.GT.PI6) GO TO 200
DX=1e4D0*DX
GO TO 300

200 IF (ADIFF«GT.PI2) GO TQ 210

GO TOQ 300
210 IF (ADIFFeGT.PI23) GO TO 220
DX=DX#0a5D0O
GOTO 300
220 IF (ADIFF.GTaPIA3) GO TO 230
XM=(X0+X1) *¥0«5D0
DX=DX*045D0
IF (IDUMP.EQ.0O) GO TO 221
CALL TMTOGQC(IT)
IF (IT «GTw ITIME) GO TO 221
WRITC (IDUMP) BLOCKI1,.BLOCK2
WRITE (6,9C00)
STOP 3
e ok sk Ao ok ok
221 ARGM=ARG(FCT(VO+XM*DIRN)})
IF (ABS{ARGI-ARGM).LTePI) GO TO 222
CALL LFIT(ARGMsARGL s XMy X1)
GO TO 300
222 IF (ABS{ARGM—ARGO)eLT-PI} GO TO 300
CALL LEIT(ARGO sARGM3 X0 s XM)
GO YO 300
230 IF (ADIFFeGTsPI32) GO TO 240
OX=DX%0es5D0
GO YO 260
240 IF (ADIFFeGT«PI116) GO TO 250
GO TO 260
250 DX=164D0%DX
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CALL LFIT{ARGO ARG X0 X1)

IF (X1eEQeXE) RETURN
ke ok

X0=x1

X1=X140X .

ARGO=ARG1 .

IF {X1.LTsXE) GO TO {00

X1=XE

IF (VARG{NI1 Eo.1o.0) VARG(Ni)=ARG(FCT(VL) )

ARG1I=VARGI(N

GO 70 102

FORMAT (°*
END

THE END IS MIGHI! DATA DUMPED? )

SUBROUTINE LFIT(ARGO sARG1sX0,X1)

B e ok A e sfe ok ofe ke ok e de ot ok

REAL®8 X0,X1,DX

DATA PI1/3.141593/ o )
COMMON /BIS1/ VANG(200) ,STACK(S00} s VERTEX{B800)
COMYON/BIS2/ SCOATA(23),
& NVERTNSTK :NREG, NVERTO s NREGO,
& IPASS, IREG,FLAGsHORZ,
& MAP(10054):INDEX(200,4)

YO=SNGL({X0)

YI=SNGL(X1)

TARGO=ARGO-SIGN(PIARGO)
TARG1=ARG!-SIGN(PI,ARG1)
YZ={YO*TARG1-Y1*TARGO)/(TARGi~TARGO)
STACK(NSTK) =SIGN(YZ, ARG1)

NSTK=NSTK+1

IF (NSTKeLTe500) RETURN

. A R ek

WRITE (6,9000)
FORMAT (10X, *WARNING?S
sToP

st e % A

END

SUBROUT INE REDUCE
e v ok et ol o e ol ok deokok

{s subroutine counts the number of zeros
om the map those with none

REAL%8 DXsDREAL,DIMAG
COMPLEX*%16 VERTEX»,V1,V4a
COMMON/BIS1/ VARG(200) s STACK(500) s VERTEX(200)
COMMON/BIS2/ SCDATA{(23) .

& NVERTsNSTK,NREG:NVERTO ,NREGO »

& IPASS, IREG,FLAG,HCRZ,

& MAP(100s8) s INDEX(200¢4)

L=1

NEND=NREG-1

DO -1 J=1.,NEND

CALL COUNT(Js NZ)

IF (NZ.EQs0) GO TO 1
NV1I=MAP(Js1)

Stack about to overflowe®

{n each

)

region and deletes
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NVA4A=MAP(J,
VI=VERTEX(
V4=VERTEX(
XMAX=DREAL
XMIN=DREAL
YMAX=D IMAG
YMIN=DIMAG
IF (NZ.EQel
WRITE (6,900
GO TO 11
0 WRITE (6,9002) XMINsXMAX, YMIN,YMAX
1 CONYINUE
9001 FORMAT(10Xs"'In the reglones?sGl4e5,°< x <%,
&G1465,"'< y <*3Gl4e5s"there are’sI3+,° zeros
9002 FORMAT(10X»"In the regions?iGl4e5,?< x <%,
BsGlAa5,°< vy <%pGl4e5s°there s 1 zeroe®
DO 2 K=1,4 :
2 MAP(L,K)=MAP(J,K) $
L=L+1
! CONTINUE
NREG=L
IF (LsEQel) GO TO 3
WRITE (6,9003)
9003 FORMAT(//10Xe100C(°+")//)
RETURN
Aok Aok
3 WRITE (6,9004)
9004 FORMAT (30X,? THERE ARE NO ZEROS IN THE GIVEN REGION®)
STOR
END
SUBROUTINE SUBDIV(N.FCT)
e 3 e o s e oK e A Aok B ook K

N
{
(
(
(

10 .
) XMINXMAXs YMIN)YMAXsNZ

This subroutine divides region n fnto two by inserting a vertical
Line if the reygion (s broader than it (s tall and a hortzontal one
otherwises The map entries are updated and the new line scennede

COMPLEX*16 VERTEXsV1,V2,V3,VAa,V5,V6

REAL*8 DREAL,DIMAG,DX

LOGICAL FLAG,HORZ

DIMENSION VERTEX(200)s INDEX(200+4) :MAP( 100 ,4)
EXTERNAL FCT
COMMON/BIS1/VARG(200),STACK(S500) s VERTEX
COMMON/BIS2/ SCDATA{19)sNOsN1sITe 1D,

& NVERT¢NSTK,NREGsNVERTO o NREGO »

& IPASS, IREG,FLAGy,HORZ,

& MAP,INDEX

NV1=MAP(N
NV2=MAP(
NV 3=MAP(
NV4=MAP(
VI=VERTEX
V2=VERTEX (N
V3=VERTEX(NV3)

Z2Z

It s necessary to dectde whether the reglon {s to be divided horizontally
or verticallye —

"
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IF {HORZ) GO TO 10 . |
cALL XNqERT(Nv1.Nv2.Nv5.FCT) ] I
CALL INSERT(NV3,NV4,NV6,FCT) ~ |
& c : / ' v S
INDEX{NVS,1)=NST ! : '
2 CALL SCAN(NyS»N 6.FCT) 5 g
INDEX(NVS,2)=NSTK
i . T C ' &) ;
B MAP{N, 2)=NVS oot
K : MAP (N, 4)=NV6 i
C ) | : ;
‘ MAP (NREG,1)=NV5 o , ' o
! ; \ MAP (NREG,2)=NV2 ' . . !
o MAP{NREG,»3)=NV6 ¢ -
- . : MAP (NREG.:4)=NV4 , j v
:; S * c 3 g ('\\ ;
I , NREG=NREG+1 , it ]
< i RETURN .
N ! ’ e A e ok ok .
- R ¢ QL
- . . ‘ 10 CALL INSERTU{NV1.NV3,NVS,FCT) § ' ‘ i
d | CALL INSERT(NV2,NV4sNV6,FCT) : |
Z' . C
R INDEX{NVS5,3)=NSTK O
o | 12 CALL SCAN(NYVS sNV6,FCT) ;
: INDExths.a)-Ns g ;
8 D : MAP (N, 3)=NV5 o
i | MAP (Ns4)=NV6 |
, c |
B MAP(NREG,1)=NV5 |
B O - ; MAP (NREG»2)=NV6 O |
o | MAP (NREG.3)=NV3 }
o | MAP(NREG,4)=NVa \ !
B C . 5 % i
8 O NRE G=NREG+1 ; : o |
B | RETURN . = |
N c dode s e e ) : : ! |
1. ' . END . i |
s o
g . i |
1 | |
s y oy ,
- R B = |
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In the reglton, 0 < x < 1.0000 » -2 70000 < y < 230000 there are 27 zeéerose
+++++++++++++++++++++++++++++¥+++f+++++++++#4$+++;+++#¥+#44444#%++#+444#+4@;+4¥¥¥4++;+++¢¥4++#+¥+#++

In the reglon, « 50000 ° - 70000

) < x < < vy there are S zerose
In the reglion, « 50000 < x < 1.0000 » " =s70000 <y

< +30000 ;
< « 30000 there are 22 zerosae.

A s SRR RS an e R et st A nn et st Rt R At R R A e L R R e TR L e R

In *he reglions

3 ) < x < » 50000 » -e70000 <y KL -220000 theres are 2 zeross
In the reqglony « 50000 < x £ 1.0000 0 -+ 70000 <y < -220000 there are 16 zeross
In the reglion, e 0 < x < 50000 ° -s20000 < y < 230000 there are 3 zerodsa
In the regions « 50000 < x < 1,0000 ° -+20000 <y < + 30000 there are 6 zerose

LR R e AL S e S R T R TR R R R R R R R R P R S SR U I BRSO RO SN A

In the reglone «50000 < x < « 75000 » —e70000 < y < -620000 there are 12 zerdss
In the region, e 0 < x < 225000 . -+20000 < y < 230000 there are 2 zeross
In the regionys « 25000 < x < « 50000 ® =+70000 <y < —-.20009 there are 2 zerose
In the reqgion, e 75000 < x < 1.0000 0 -e70000 < y < =2200019 there are 4 zerose
In the regione 25000 < x < «50000 ® -e20000 <y < e 30000 there is 1 zerooe
In the region, e 75000 < =z < 1.0000 0 -e20000 < y < 30000 there are 6 zerocss

B o e o I e I I R O o O I T I I SRR H S PSR S US Y S S S S S U

In the reglon, « 50000 < x < e 75000 ° —-970000 <y < -s45000 there are 6 zerose
In 2the region, e 0 < x < e 25000 ° -e20000 < y £ «e50000E=0lthere are 2 zeross
In the regione « 25000 < x < » 50000 ® —e20000 < ¥y < «50000%==01there is 1 zZeraooe
In the regions e 75000 < x < 1.0000 » -e20000 < y < e50000==01there are 6 zerose
In the regions « 50000 < x < « 75000 ) -e45000 < vy < -.20007 there are 6 zeroso.
In the reglons » 25000 < x < » 50000 ° -eA5000 < y < —+20000 there are 2 zerose
In the reglons e 75000 < x < 1.0000 ® -45000 < y < -20000 there are 4

Z2rose
B o B T e o N I o R ek b R B S R b e o T S T S Ao o S A e A O A A T T T T ¥ D AU Ar i I W AV Py

In the regfions «+ 50000 « 62300 =e70000

< x < ° < y < =e45000 there is 1 zeroe
In the reglon, « 25000 < x < e 37500 ° -e20000 <y < e 5000N002F-01there is 1 zeroa
In the regions, e 75000 < x < e 873500 ° - 20000 <y < e 50000==01there are 2 zerose
In the regione e« 50000 < x < e 62500 ° -245000 < vy < -s20000 there are 4 zerose
In the reglfons «25000C < x < e 27500 0 — 45000 <y < —220000 there is 1 Zeroe
In the reglony, e« 75000 < x < «eB87500 » - 45000 < y < —-e20002"7 there are 4 zerose
In the reglons e 62500 < x < e 75000 0 -+70000 < y < =+45000 there are 5 zerose
In the regiones 212500 < x < « 25000 » -e20000 < y < ¢«500005~01¢there are 2 zerose
In the region, « 87500 < x < 10000 0 -e20000 < y < +50000F~-01lthere are 4 zerose
In ¢the reglon, 2 62500 < x < e 75000 ° =+245000 < y < —e20000 there are 2 zeroses
In the regfon, 237500 < x £ « 50000 ° -045000 < y < =-920000 there is 1 zZero.
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—e75000E-01 there

—e7300N==01there
- w I 500 there
—-+325020 there
L =eH7509 there

-2 7500NE=01there
-2 75000%=01there

—-e45010 there
—«20000 there
—-520009 there
-+20000 there
- 450N there

e50000==01there

+H0000E=01there
—+20000 there
—=e20029 there
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-32500 there
—e32500 there
= 57500 there
—=75020%=01there
—»200929 there
-e20000 there

+500N0E=01there
—e 20070 there
—e 75000F=01there

—e75000%=01 there
-e57500 there
= 750720%=01there

—245000 there
-s20009 thare
-220000 there
=e45000 there
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=620000 there
—-e20009 there
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-e38750 there
- G3TRND there
-2 26259 there
— e 26250 there
-e12500%=Clthere
-« 13750 there
—aHAT7TS0 there
- 13750 there
-e51250 there
—e 26259 there
-251250 there

—e12500E=01there
-e32500 there
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-s57500 there are
=2 750N0E=01there are
-e20077 there are
—e20000° there is
—a75000F=01there is
—+20000 Yhere is
—e200N0 there i{s
—-225000 there s
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—»20000 there is
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In the regfions « 71875 -s70000

< x < e 75000 ° < y < —aHhHARTS there is 1 zeroe

In *the region, e 34375 < x < e 37500 . ° -e13750 <y < - 10625 there is 1 Zeroe

In the regions e 59375 < x < 262500 ) =-e26250 < y < —-e23125 there is 1 zerocoe

In the regfon, «21875 < x < e 25000 ¢ = 12500E=01< y < s 10750F=01there is 1 zZeroes

In the regfions » 71875 < x < e« 75000 ) -e26250 < y < —e23125 . %there {s 1 zZeroe

In *the regiony e 50000 < x < « 53125 ® —-e23375 <y < -2 26250 there is 1 zZeroe

In the regions e 56250 < x <. e S9375 ° —=e29375 < y <. —e 26250 there is 1 zeroe

In the region, e GETSO < x £ e71375 ) —e54375 < y < -s51250 there is 1 Zeroos

Iin the reqgton, «+ 93750 < x £ s 96875 ° —e43750E=-01< vy < =el125%3E=D1there is 1 zZeraoe.

In the regions «53125 < x < e 56250 ° ~41875 < y < =38750 there is i Zeroe.

In the reglion, e 84375 < x < « 87500 » —e16875 < y < ~13750 there is 1 zZeroe

In the regions e HA3TH < x < e 62500 9 254375 <y < -+51250 there is 1 zeroe

In the regions e 65625 < x € =« 68750 ° = 60625 < y < —57500 there is 1" zeroe

In the reglione s 90625 < x < e 93750 ° -e10625 < y < —e75000%=01there is 1 Zeroe

In the regione s 78125 < x < » 81250 ° —-e23125 < y < -220000 therne {s 1 ZeT o

In the regions 65625 < x < e 68750 ° -e23125 <y < —+20000 there is 1 zeros

In the regions «34375S < % < I7500 ° -e23125 < y < —e20009 there is 1 zZeros

5 In the region, s 71875 < x < =« 75000 ° -e48125 < y < ~e45000 there is 1 zeroe
Z In the reglions e 46875 < x < »+50000 ® -023125 < y < -e20000 there is 1 zZeroe
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Appendix C Addenda i

This appendix expands some parts of sections 2:7
and 2:9. 1In the first of these (on page 60) it is shown
that in a neighbourhood of a simplé corotation point there
are two real (in fact analytic) solutions of equation [7:1]
if the local Richardson number at the corotation point lies

between 0 and 1/4, their expansions beginning

¢ f*r;;,""“

. o ' [C#1]
; 1=y 7 ‘

When %4 = 1/4 there is only one real solution ()'=0
and j; = ﬁp); as M. is decreased this bifurcates into two
real solutions, initially close, buf aS'ﬁﬁ'approaches 0 (and
Y —>1) the slope of that which intersézts S) at corotation
becomes more and more extreme (and opposed to that of\a )
unless g, =0. When R is very close to zero and fl-#o this
causes one complete oscillation of the solution to be
squashed into a small neighbourhood of the corotation point
with the two solutions being again almost coincident outside
this region. Ifﬂone considers the 'angular sepgration' on
the Riemann sphere of the values of the two solutions at a

fixed point (excluding corotation)

9= n § - Lo <




Appendix C Addenda ii

then

R =

2> 9 = o [Cy3}

xl=

but

o {;0">o>

R, = o ___> ﬁ s [C:4]
21 (?0‘ <0 )
where «’%) = g, (ﬁa-fa)

This implies the geometric structure of fig.2
(facing page 63) and is the basis for the remarks at the top
of page 74. The structure of fig.2 can also be deduced
analytically from the formulae on pages 61,62; when f&=l/4

the general solution is

}’# f " 1+ ho - - [C:5)

C —a,no

and when /& =0 it is

/g- _ 5.’“ " o*—'(/++. 0‘---\) [C:6]

PR

C - ~(atra)to

Thus if we start with real values at negative o and

- ii -




Appendix C Addenda iii

integrate to positive o, the sign of the imaginary part of

¢ will in the first case be that of a, 4o and in the

: when Re =0
second that of (40'0,4'4.)4&0" Because y a, (ﬂo—fo)=1 and
00"/1*’4! =- ﬂ: 9, ,if v% is positive do%th. has the

opposite sign to 4,i thus the real axis (except for one
point) maps to one hemisphere when % =1/4 and the other
when ¢ =0, but to the same when is negative.

In the context of compressible flows this process

of bifurcation and recombination has the interesting

consequences described in section 2:9. If ﬁ/ #0 the fact

that as YZC"70 a complete oscillation of i one solution is
compressed into a neighbourhood of the corotation point
means that on recombination of the two solutions at 7?,{ =0
the nodes of one (on one side of corotation) have been
shifted by one relative to those of the other solution (the
'vanishing' node has in effect been zbsorbed by the corota-
tion singulafity) - The form of the 'neutral curve' depicted
in fig.4‘ (facing page 74) follows at once.

The argument on page 73 then shows that this curve,
except perhaps for one mode, must sepgrate regions of
stability and instability; the crucial point is the
demonstration that DA/BLD is complex for most modes which is

amplified and improved in the following (it is slightly more

convenient to use [9:2] than [9:3]).

Let us suppose that for one mode, i.e. a 'solution

; of [9:2] with ;‘[a,) 7=§’[(r)=0, 2A/>w is real (defining A

- iii -
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Appendix C Addenda iv

as in section 2:9 to be the final valﬁe of ;’ at 4? derived
from aﬁ initial value of zero at ). Then making a first
order perturbation in D to 85==00+0Q0 the imaginary part of
/A remains zero (to first order). The perturbed frequency
QO has a unique associated perturbed real solution )f (if
f&,fo 1/4) and é]%e) must satisfy the boundary condition at
a to first order. Moving the inner boundary point to one
of the other nodes of ;‘ in the inner oscillatory region one
obtains a sequence of associated modes with the same
frequency .

I now show that on none of these associated modes
can 24/ also be real. For suppose . and @, to be the
inner boundary points of two modes with the same frequency
GO such that for both 94/3w is real. Then S(a) = $(&) =0
and by the above ;?Q;)=éiﬂ%)=0 to first order. This implies

the existence of a solution to the.variational equation

/

(:i.{-;) = -s’Z_IO—:‘ {ﬁz,),,z.,. é%” b (w2 f)(’“-&),ﬁ) +o—79‘1}
1

in [4,,q,] with ?2ﬁxa=0 at 4, ,4,. As in section 2:8 this

[C:7]

g' +

>y

2m S +‘M‘t)o} 9;

o 200

implies that

- [C:8]
2 L \ s S z
/5 /?,7 + O"il + '(m—zfzg/(m_a)a>) +O ;-2,

(5
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Appendix C Addenda v

musgt change sign in [41,43], but this interval lies in the

oscillatory region where
‘z't T2 ' 2 2 '
pr - L 4 (m- 252§)(;m—mo;‘) - [C:9]
cl

is a definite quadratic form in ;‘ and so

(2matmw,) < u(K~c )(m Lpn ,_06;?) [C:10]

which implies

B
4 2 % 11T, oa [C:11]
(zma +mwo) < LK ro ) apat s )
and thus [C:8] is also definite. This contradiction shows
that at most on one out of a large, possibly infinite, set
of modes can ?A/aw be real. In faf:;ft for a neutral curve
not to have contiguous unstable modes both A /2 and BA/D,B

would have to be real all along it.




