249 research outputs found

    CD20-mediated B cell depletion in acetylcholine receptor autoantibody-positive myasthenia gravis

    Get PDF
    Myasthenia gravis (MG) is an autoimmune disorder characterized by muscle weakness and fatigue, mediated in the majority of cases by IgG1 autoantibodies targeting the acetylcholine receptor (AChR). As AChR autoantibodies have been shown to be pathogenic, therapies targeting B cells have been applied in patients with AChR MG for more than a decade. Recently, a phase 2 trial of the CD20-targeting agent, rituximab, in AChR MG unfortunately failed to meet its primary endpoint. Converging data however from non-randomized clinical series, some of which with more participants than the phase 2 trial, support efficacy of rituximab in AChR MG, especially early onset disease. In this opinion article, we summarize both clinical data and mechanistic principles on the use of CD20 depletion therapy in AChR MG, which we believe lend support to the argument that CD20 depletion can still be a useful therapeutic strategy for patients with AChR MG

    Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini.

    Get PDF
    Polar ecosystems are sensitive to climate forcing, and we often lack baselines to evaluate changes. Here we report a nearly 50-year study in which a sudden shift in the population dynamics of an ecologically important, structure-forming hexactinellid sponge, Anoxycalyx joubini was observed. This is the largest Antarctic sponge, with individuals growing over two meters tall. In order to investigate life history characteristics of Antarctic marine invertebrates, artificial substrata were deployed at a number of sites in the southern portion of the Ross Sea between 1967 and 1975. Over a 22-year period, no growth or settlement was recorded for A. joubini on these substrata; however, in 2004 and 2010, A. joubini was observed to have settled and grown to large sizes on some but not all artificial substrata. This single settlement and growth event correlates with a region-wide shift in phytoplankton productivity driven by the calving of a massive iceberg. We also report almost complete mortality of large sponges followed over 40 years. Given our warming global climate, similar system-wide changes are expected in the future

    Dysregulated T cell expression of TIM3 in multiple sclerosis

    Get PDF
    T cell immunoglobulin- and mucin domain–containing molecule (TIM)3 is a T helper cell (Th)1–associated cell surface molecule that regulates Th1 responses and promotes tolerance in mice, but its expression and function in human T cells is unknown. We generated 104 T cell clones from the cerebrospinal fluid (CSF) of six patients with multiple sclerosis (MS) (n = 72) and four control subjects (n = 32) and assessed their cytokine profiles and expression levels of TIM3 and related molecules. MS CSF clones secreted higher amounts of interferon (IFN)-γ than did those from control subjects, but paradoxically expressed lower levels of TIM3 and T-bet. Interleukin 12–mediated polarization of CSF clones induced substantially higher amounts of IFN-γ secretion but lower levels of TIM3 in MS clones relative to control clones, demonstrating that TIM3 expression is dysregulated in MS CSF clones. Reduced levels of TIM3 on MS CSF clones correlated with resistance to tolerance induced by costimulatory blockade. Finally, reduction of TIM3 on ex vivo CD4+ T cells using small interfering (si)RNA enhanced proliferation and IFN-γ secretion, directly demonstrating that TIM3 expression on human T cells regulates proliferation and IFN-γ secretion. Failure to up-regulate T cell expression of TIM3 in inflammatory sites may represent a novel, intrinsic defect that contributes to the pathogenesis of MS and other human autoimmune diseases

    AXES at TRECVid 2011

    Get PDF
    The AXES project participated in the interactive known-item search task (KIS) and the interactive instance search task (INS) for TRECVid 2011. We used the same system architecture and a nearly identical user interface for both the KIS and INS tasks. Both systems made use of text search on ASR, visual concept detectors, and visual similarity search. The user experiments were carried out with media professionals and media students at the Netherlands Institute for Sound and Vision, with media professionals performing the KIS task and media students participating in the INS task. This paper describes the results and findings of our experiments

    The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy.

    Get PDF
    Chronic traumatic encephalopathy (CTE) is a neurodegeneration characterized by the abnormal accumulation of hyperphosphorylated tau protein within the brain. Like many other neurodegenerative conditions, at present, CTE can only be definitively diagnosed by post-mortem examination of brain tissue. As the first part of a series of consensus panels funded by the NINDS/NIBIB to define the neuropathological criteria for CTE, preliminary neuropathological criteria were used by 7 neuropathologists to blindly evaluate 25 cases of various tauopathies, including CTE, Alzheimer's disease, progressive supranuclear palsy, argyrophilic grain disease, corticobasal degeneration, primary age-related tauopathy, and parkinsonism dementia complex of Guam. The results demonstrated that there was good agreement among the neuropathologists who reviewed the cases (Cohen's kappa, 0.67) and even better agreement between reviewers and the diagnosis of CTE (Cohen's kappa, 0.78). Based on these results, the panel defined the pathognomonic lesion of CTE as an accumulation of abnormal hyperphosphorylated tau (p-tau) in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci and in an irregular pattern. The group also defined supportive but non-specific p-tau-immunoreactive features of CTE as: pretangles and NFTs affecting superficial layers (layers II-III) of cerebral cortex; pretangles, NFTs or extracellular tangles in CA2 and pretangles and proximal dendritic swellings in CA4 of the hippocampus; neuronal and astrocytic aggregates in subcortical nuclei; thorn-shaped astrocytes at the glial limitans of the subpial and periventricular regions; and large grain-like and dot-like structures. Supportive non-p-tau pathologies include TDP-43 immunoreactive neuronal cytoplasmic inclusions and dot-like structures in the hippocampus, anteromedial temporal cortex and amygdala. The panel also recommended a minimum blocking and staining scheme for pathological evaluation and made recommendations for future study. This study provides the first step towards the development of validated neuropathological criteria for CTE and will pave the way towards future clinical and mechanistic studies

    Acute Demyelinating Disease after Oral Therapy with Herbal Extracts

    Get PDF
    Central nervous system demyelinating processes such as multiple sclerosis and acute disseminated encephalomyelitis constitute a group of diseases not completely understood in their physiopathology. Environmental and toxic insults are thought to play a role in priming autoimmunity. The aim of the present report is to describe a case of acute demyelinating disease with fatal outcome occurring 15 days after oral exposure to herbal extracts

    Identification of Subject-Specific Immunoglobulin Alleles From Expressed Repertoire Sequencing Data

    Get PDF
    The adaptive immune receptor repertoire (AIRR) contains information on an individuals' immune past, present and potential in the form of the evolving sequences that encode the B cell receptor (BCR) repertoire. AIRR sequencing (AIRR-seq) studies rely on databases of known BCR germline variable (V), diversity (D), and joining (J) genes to detect somatic mutations in AIRR-seq data via comparison to the best-aligning database alleles. However, it has been shown that these databases are far from complete, leading to systematic misidentification of mutated positions in subsets of sample sequences. We previously presented TIgGER, a computational method to identify subject-specific V gene genotypes, including the presence of novel V gene alleles, directly from AIRR-seq data. However, the original algorithm was unable to detect alleles that differed by more than 5 single nucleotide polymorphisms (SNPs) from a database allele. Here we present and apply an improved version of the TIgGER algorithm which can detect alleles that differ by any number of SNPs from the nearest database allele, and can construct subject-specific genotypes with minimal prior information. TIgGER predictions are validated both computationally (using a leave-one-out strategy) and experimentally (using genomic sequencing), resulting in the addition of three new immunoglobulin heavy chain V (IGHV) gene alleles to the IMGT repertoire. Finally, we develop a Bayesian strategy to provide a confidence estimate associated with genotype calls. All together, these methods allow for much higher accuracy in germline allele assignment, an essential step in AIRR-seq studies
    corecore