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The adaptive immune receptor repertoire (AIRR) contains information on an individuals’

immune past, present and potential in the form of the evolving sequences that encode the

B cell receptor (BCR) repertoire. AIRR sequencing (AIRR-seq) studies rely on databases

of known BCR germline variable (V), diversity (D), and joining (J) genes to detect

somatic mutations in AIRR-seq data via comparison to the best-aligning database alleles.

However, it has been shown that these databases are far from complete, leading to

systematic misidentification of mutated positions in subsets of sample sequences. We

previously presented TIgGER, a computational method to identify subject-specific V

gene genotypes, including the presence of novel V gene alleles, directly from AIRR-seq

data. However, the original algorithm was unable to detect alleles that differed by

more than 5 single nucleotide polymorphisms (SNPs) from a database allele. Here we

present and apply an improved version of the TIgGER algorithm which can detect

alleles that differ by any number of SNPs from the nearest database allele, and can

construct subject-specific genotypes with minimal prior information. TIgGER predictions

are validated both computationally (using a leave-one-out strategy) and experimentally

(using genomic sequencing), resulting in the addition of three new immunoglobulin heavy

chain V (IGHV) gene alleles to the IMGT repertoire. Finally, we develop a Bayesian strategy

to provide a confidence estimate associated with genotype calls. All together, these

methods allow for much higher accuracy in germline allele assignment, an essential step

in AIRR-seq studies.
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INTRODUCTION

Affinity maturation, in which B cells expressing receptors
with an improved ability to bind antigen are preferentially
expanded, is a key component of the B cell-mediated adaptive
immune response (1, 2). This selection process requires a
diverse pool of B cell receptors (BCRs) which is generated
both through V(D)J recombination [in which each B cell
creates its own BCR by recombining variable (V), diversity (D),
and joining (J) genes], and through the subsequent somatic
hypermutation (SHM) of these sequences during T-dependent
adaptive immune responses. SHM is an enzymatically-driven
process that introduces mainly point substitutions into the
BCR at a rate of about one mutation per 1,000 base-pairs
per cell division (3, 4). Leveraging next-generation sequencing
technologies to profile this adaptive immune receptor repertoire
(AIRR) allows tens- to hundreds-of-millions of unique BCR
sequences to be collected from a single subject and has become
a prevalent method for studying aspects of the B cell-mediated
immune response, including topics related to gene usage,
mutation patterns, and clonality (5–9).

An accurate immunoglobulin (Ig) germline receptor database
(IgGRdb) is a key part of the typical AIRR-seq data analysis
pipeline (10). Analysis generally begins with pre-processing tools
specifically designed for BCR sequencing, such as pRESTO
(11). Following this, computational methods [e.g., IMGT/HighV-
QUEST (12), IgBLAST (13), or iHMMune-Align (14)] are used
to align sample sequences to the set of unmutated reference
alleles from an IgGRdb, such as the one maintained by IMGT (3).
However, these IgGRdbs have been shown to be incomplete, and
studies continue to discover new alleles (5–9). Immunoglobulin
(Ig) loci are rarely fully sequenced in a single subject due
to the large locus size and similarity of genes confounding
many modern high-throughput sequencing methods (7, 15,
16). Thus, if a subject carries a novel allele, it can lead to
incorrect interpretations of which positions have been mutated
and can subsequently affect the reconstruction of clonal lineages.
We previously created the TIgGER method, and an associated
software package, to detect novel V gene alleles from AIRR-
seq data, infer the genotype of a subject, and correct the initial
allele assignments (8). Since the development of TIgGER, several
other methods have been proposed to discover novel alleles
(17–20). While the application of TIgGER to several subjects
revealed a high prevalence of novel alleles, the design of the
method limited its ability to detect novel alleles differing by
more than five polymorphisms from a known IgGRdb allele,
which we previous found covers ∼10% of alleles in the IMGT
IgGRdb (8).

Here we present and apply improvements upon the
original TIgGER method that allow for the detection of
novel alleles that differ greatly from IgGRdb alleles as
well as for the assignment of levels of confidence to each
genotype call. This updated version of TIgGER (version
0.3.1 or higher) is available for download as an R package
from The Comprehensive R Archive Network (CRAN; http://
cran.r-project.org), with additional documentation available
at http://tigger.readthedocs.io. The input and output formats

of TIgGER conform to the Change-O file standard (21),
and thus the method can be used seamlessly as part of
the Immcantation tool suite, which provides a start-to-
finish analytical ecosystem for high-throughput AIRR-seq
datasets (http://immcantation.org), including methods for pre-
processing, population structure determination, and advanced
repertoire analyses.

RESULTS

Detecting Distant Alleles Using Dynamic
Positioning of the “Mutation Window”
TIgGER detects novel alleles by analyzing the apparent mutation
frequency pattern at each nucleotide position as a function of
the sequence-wide mutation count. The input to the method
consists of a set of rearranged BCR sequences (which may
be mutated, but should contain at least some sequences that
have not accumulated mutations) from a single subject and
the alignment of those sequences to IgGRdb alleles, such as
the output of running IMGT/HighV-QUEST (4, 22) or IgBlast
(13). TIgGER searches for novel V alleles among the sequences
that fall in a specified “mutation window” relative to each
of the IgGRdb alleles. The mutation window of the original
algorithm (8) had an upper bound of at most 10 sequence-wide
mutations, while the lower bound was defined as minimum(L,
5), where L was the most frequent mutation count among
sequences with at most 10 sequence-wide mutations. Positions
were considered as potentially polymorphic if a linear fit
predicted a mutation frequency (y value) above a threshold
level of 0.125 at a mutation count (x value) of zero (i.e., the
y-intercept). While this method had excellent sensitivity and
specificity, the definition of the lower bound meant that TIgGER
could only detect novel alleles that differed by at most five
single nucleotide polymorphisms (SNPs) from some previously
known IgGRdb allele. We hypothesized that by modifying the
TIgGER algorithm to dynamically shift the mutation window
to the most relevant region for discovery of the polymorphic
position, it would be possible to detect novel V alleles that
differed by any number of polymorphisms from the nearest
IgGRdb allele.

The updated TIgGER algorithm described here defines the
lower bound of the mutation window for each allele as the
mutation count of the most frequent sequence assigned to that
allele. The upper bound of the mutation window is always
nine bases greater than the lower bound. Positions are analyzed
within this window, and considered as potentially polymorphic
if a linear fit predicts a mutation frequency (y value) above a
threshold level of 0.125 at a mutation count (x value) one less
than the start of the mutation window (see Methods for details).
The behavior of the updated TIgGER algorithm (Figure 1,
bottom row) is equivalent to the original TIgGER algorithm
(Figure 1, top row) when analyzing sequences derived from a
novel allele with a single nucleotide polymorphism (Figure 1,
first column). The behavior of the two algorithms diverges
slightly in cases where 2–5 polymorphisms are present in the
novel allele (Figure 1, middle column), as the updated algorithm
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FIGURE 1 | Distant V gene alleles can be detected by dynamic shifting of the mutation window. The original TIgGER algorithm (top row) and the updated method

(bottom row) were applied to BCR sequences generated from two subjects, hu420143 and 420IV, as part of a vaccination time course study (18). In both cases, the

mutation frequency (y-axis) at each nucleotide position (gray lines) was determined as a function of the sequence-wide mutation count (x-axis). For each position

known to be polymorphic (dark gray lines) (12), linear fits (red lines) were constructed using the points within the mutation window (red shaded region). The linear fit

was then used to estimate the mutation frequency at the intercept location (blue dotted line). Sequences that best aligned to IGHV1-2*02 from hu420143 were used

to demonstrate the behavior when detecting a germline with a single nucleotide polymorphism (left column), while sequences that best aligned to IGHV3-43*01 from

420IV were used to demonstrate the behavior when detecting a germline with three polymorphisms (middle column), as novel alleles with that number of

polymorphisms had been previously discovered in those subjects (12). Data to assess the behavior when detecting a novel allele with seven polymorphisms (right

column) was simulated using sequences from hu420143 that best aligned to IGHV1-2*02 by artificially adding six base changes to the germline sequence used for

alignment, as no novel allele with more than five polymorphisms had been discovered. In all cases, only sequences from pre-vaccination time points were used from

these individuals.

FIGURE 2 | The updated TIgGER method detects distant alleles with high sensitivity. Detection of novel V gene alleles differing from IgGRdb alleles by n

polymorphisms was simulated by extracting experimental sequences best aligning to a single IgGRdb allele in a single subject, then inserting into the IgGRdb an allele

n polymorphisms in silico and providing only the modified IgGRdb allele to TIgGER. Each sensitivity measurement at distance n (x-axis) included modification of all

IgGRdb alleles best-aligning to at least 500 sequences in subject PGP1. The variance in sensitivity was estimated by repeating this procedure for 100

randomly-modified IgGRdb alleles and the mean sensitivity as a function of n was determined for 1 ≤ n ≤ 30. Error bars represent the standard error of the mean.
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FIGURE 3 | TIgGER identifies high diversity in the inferred IGHV genotypes of 26 genetically distinct subjects, and high similarity among 5 monozygotic twin pairs.

IGHV genotypes of 31 subjects (columns) were inferred using the frequency method from the updated TIgGER algorithm, under the default settings. Monozygotic twin

pairs are indicated as TW***A and TW***B; multiple sclerosis subjects are denoted as M*; influenza vaccination time course subjects are denoted PGP1, 420IV, and

hu420143; myasthenia gravis subjects are indicated by AR** and MK** with the associated healthy controls indicated by HD**. Each row represents an IGHV gene,

and the color(s) in each column represent(s) the allele(s) present in that subject using the IMGT designation shown in the color bar. Note that the size of the bars does

not represent relative allele frequency. Clustering of the genotypes was performed using Ward’s method.

allows both the upper bound of the mutation window and the
location where the mutation frequency threshold is evaluated to
dynamically shift based on the start of the window. The greatest
divergence is observed in detecting novel alleles with over 5
single nucleotide polymorphisms. In this case, the mutation
window of the original algorithm ends before the window of the
updated algorithm (Figure 1, right column). When confronted
with such distant novel alleles, the linear fits of the polymorphic
positions constructed by the original algorithm often failed
to yield y-intercepts large enough to identify the positions as
polymorphic, whereas the updated algorithm can identify all
polymorphic positions.

To test the performance of the updated TIgGER method, we
simulated data in which novel alleles differed by n SNPs from
the nearest IgGRdb allele by randomly changing n nucleotides
in the IgGRdb alleles utilized by TIgGER (i.e., by removing
the true allele from the IgGRdb and replacing it with a distant
one). Using AIRR-seq data from subject PGP1 described in our
previous study (23), the 38 IGHV alleles assigned to at least 500
unique BCR sequences were each tested for every value of n
from 1 to 30. This process was repeated 100 times per value of
n random single nucleotide polymorphisms, to ensure a diversity
of polymorphic positions and base changes would be tested. The
fraction of times the original germline sequence was recovered
was determined as a function of n and averaged across all
germline alleles tested. The updated version of TIgGER had 100%
sensitivity in the range of 1 ≤ n ≤ 5, and was also able to detect
novel alleles with high sensitivity (over 99%) for all values of n

tested (Figure 2). Additionally, only the removed germline alleles
were discovered by the algorithm; no false positive sequences
were predicted. Thus, TIgGER can detect novel V alleles that
are far from any known IgGRdb allele with high sensitivity
and specificity.

To search for distant novel alleles, the updated version
of TIgGER was applied to AIRR-seq data from the seven
individuals described in our previous study (8), including
three subjects receiving influenza vaccination (23) and four
subjects with multiple sclerosis (24, 25). However, this yielded
the same alleles previously reported, with the most-distant
novel alleles differing from the nearest IgGRdb allele by
at most three polymorphisms (Table S1). We next applied
the updated TIgGER algorithm to 24 additional individuals.
This included published AIRR-seq data from five pairs of
monozygotic twins (10), 10 subjects with myasthenia gravis and
4 subjects that served as healthy controls (26). Considering all
31 individuals, TIgGER identified a total of 28 novel alleles
that were part of the genotype inferred for one or more
of the individuals (Figure 3 and Table S1). All of the novel
alleles differed from IgGRdb alleles by at most three single
nucleotide polymorphisms. Thus, while it was demonstrated
on synthetic data that the updated version of TIgGER has the
potential to detect alleles that differ greatly from known IgGRdb
alleles, none of the novel alleles discovered in the repertoires
of 26 genetically distinct individuals (monozygotic twins are
considered genetically indistinguishable) differed by more than
three polymorphisms.
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Experimental Validation of Novel IGHV
Gene Alleles Predicted by TIgGER
The application of TIgGER to AIRR-seq data from 26 genetically
distinct individuals identified 28 novel IGHV gene alleles
(Figure 3 and Table S1). We selected four of these novel alleles
that were each predicted by TIgGER in multiple individuals
for experimental validation: IGHV1-2∗02_T163C, IGHV1-
8∗02_G234T, IGHV3-20∗01_C307T and IGHV1-69∗06_C191T.
Three of these alleles were also predicted independently by other
groups. IGHV1-2∗02_T163C was identified in (5, 9), IGHV1-
8∗02_G234T was identified in (9) and IGHV3-20∗01_C307T
was identified in (27). IGHV1-69∗06_C191T has not been
previously reported.

To validate the TIgGER predictions, we cloned and sequenced
the relevant gene locus directly from genomic DNA. For each
allele, we chose one of the subjects where it was predicted
for validation: MK04, MK05, MK05, and MK06 for the alleles
of IGHV1-2, IGHV1-8, IGHV3-20, and IGHV1-69, respectively.
PCR primers were designed to fully amplify the exons and
introns of each target IGHV gene locus (IGHV1-2, IGHV1-8,
IGHV3-20, and IGHV1-69) from genomic DNA; sequences for
each primer set are provided in Table S2. PCR amplicons for
each gene were then generated individually from the genomic
DNA samples of the donor where they were predicted to
be present, and subsequently cloned. DNA was isolated from
4 to 15 clones per gene target, and Sanger sequenced from
both ends. These sequences were compared directly to the
allele sequences inferred by TIgGER from the same donor to
assess the degree of concordance. In all cases (4/4), genomic
DNA sequencing provided validation of the putative IGHV
polymorphisms inferred by TIgGER from the AIRR-Seq data
suggesting that TIgGER has high specificity for identifying new
IGHV alleles.

Single representative clones for each genomic sequence
validating the TIgGER predictions were submitted to GenBank
and have been assigned the following accession numbers:
MH267285 (IGHV1-2∗02_T163T), MH267286 (IGHV1-
8∗02_G234T), MH332884 (IGHV3-20∗01_C307T), and
MH359407 (IGHV1-69∗06_C191T). These predicted alleles
were also submitted to IMGT for inclusion in their IgGRdb.
Three of these alleles were accepted for inclusion in the
IMGT IgGRdb as novel alleles, and have been assigned the
following allele names: IGHV1-2∗06 (MH267285), IGHV3-20∗03
(MH332884), and IGHV1-69∗17 (MH359407). The fourth
allele that we experimentally validated (IGHV1-8∗02_G234T)
was added to the IMGT IgGRdb as IGHV1-8∗03 during the
course of this study, and was thus no longer considered novel.
Along with IGHV1-8∗03, several other alleles identical to
TIgGER predictions were added to IMGT during this study:
IGHV1-18∗01_T111C as IGHV1-18∗04, IGHV2-70∗01_T164G as
IGHV2-70∗15, IGHV3-64∗05_A210C_G265C as IGHV3-64D∗06,
and IGHV3-9∗01_C296T as IGHV3-9∗03. Overall, eight of the
28 novel IGHV genes predicted by TIgGER in 26 genetically
distinct individuals are now part of the IMGT IgGRdb,
including three novel IGHV alleles that directly resulted from
this study.

TABLE 1 | Performance of TIgGER in detecting the set of V gene alleles

comprising each IGHV family starting from a sparse IgGRdb.

Subject IGHV family Alleles discovered/Alleles present (%)

420IV 1 12/12 (100%)

420IV 2 5/5 (100%)

420IV 3 24/27 (89%)

420IV 4 9/9 (100%)

420IV 5 3/3 (100%)

420IV 6 1/1 (100%)

420IV 7 1/1 (100%)

420IV 55/58 (95%)

hu420143 1 8/12 (67%)

hu420143 2 5/5 (100%)

hu420143 3 16/22 (73%)

hu420143 4 9/11 (82%)

hu420143 5 1/1 (100%)

hu420143 6 1/1 (100%)

hu420143 7 1/1 (100%)

hu420143 41/53 (77%)

PGP1 1 11/14 (79%)

PGP1 2 6/6 (100%)

PGP1 3 14/29 (48%)

PGP1 4 10/13 (77%)

PGP1 5 1/2 (50%)

PGP1 6 1/1 (100%)

PGP1 7 1/2 (50%)

PGP1 44/67 (66%)

Total 140/178 (79%)

TIgGER was run iteratively to detect the set of IGHV alleles carried by each of three

subjects. An example of detecting IGHV1 family alleles is shown in Figure 4. For each

subject, the algorithm was provided an initial IgGRdb consisting of only the single most-

commonly observed allele for each IGHV family. Performance was assessed by comparing

the final number of alleles per family discovered by this iterative method to the number

of alleles per family resulting from running the TIgGER algorithm when provided with a

complete list of IgGRdb alleles. The final total number of alleles discovered for each subject

are highlighted in bold.

Inference of IGHV Genes Starting From a
Sparse IgGRdb
TIgGER relies on the ability to make initial assignments of BCR
sequences to alleles from an IgGRdb. However, such IgGRdbs
may be sparse or non-existent for certain species; IMGT/GENE-
DB has only a single IgGRdb IGHV allele for most genes in
mouse, and only a single allele for all genes in rat and rhesus
macaque. Nevertheless, IGHV variation was observed in all of
these species [for example, Mouse (28, 29), Rat (30), Macaque
(31, 32)]. In principle, the deep coverage of repertoire sequencing
data could obviate the need for IgGRdbs by inferring the set
of alleles for each subject based solely on the observed set of
rearranged sequences. Here we consider whether a very sparse
IgGRdb may be sufficient to discover the IGHV alleles of a
subject’s IGHV genotype. This is theoretically possible given the
ability of the updated TIgGER algorithm to detect alleles that
differ greatly from the nearest known IgGRdb allele.
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FIGURE 4 | Iterative application of TIgGER detects most IGHV alleles beginning from a sparse IgGRdb containing only one allele per IGHV family. Sequences from

subject PGP1 that best aligned to any IgGRdb allele from the IGHV1 family were all reassigned to the most common allele, IGHV1-18*01 (first panel). The updated

TIgGER algorithm was used to detect “novel” alleles that were not in the IgGRdb (initially consisting only of IGHV1-18*01). Five alleles were discovered after this first

iteration, and sequences were reassigned based on this expanded IgGRdg consisting of 6 alleles (second panel). After a second iteration of TIgGER (third panel), 5

additional alleles were discovered, and the resulting sequence assignments closely matched the control case where TIgGER was used with all known IGHV IgGRdb

alleles (fourth panel). The height of each bar indicates the number of sequences assigned to the indicated IGHV allele, while the bar colors indicate the allele

assignment given to sample sequence in the control case.

To evaluate the ability of TIgGER to identify the set of
alleles carried by an individual when starting from a sparse
IgGRdb, we simulated the extreme case of each IGHV gene family
containing only a single allele in the IgGRdb. The performance
was evaluated on published sequencing data from three subjects
(PGP1, hu420143, and 420IV; see Methods). For each subject,
the IgGRdb was defined by the single alleles from each IGHV
family that were most frequently assigned by IMGT/HighV-
QUEST. All sequences initially assigned to any allele in that
family were then reassigned to that single IgGRdb allele. The set
of IGHV genes carried by each individual was then identified
by iterative applications of TIgGER. After each application of
TIgGER, the set of novel alleles discovered by running the
algorithm was added to the IgGRdb to be used for subsequent
iterations, and sequences were reassigned to their most similar
IgGRdb allele (measured byHamming distance). The process was
repeated until no new allele assignments were made (at most
five iterations in these studies). The final set of alleles of each
IGHV family discovered by this method was compared to the
result obtained when running the TIgGER algorithm followed
by genotype inference using the original IMGT/HighV-QUEST
allele assignments and full IgGRdb (Figure 4).

The updated TIgGER algorithm discovered up to 95% (79%
average) of the alleles in each of the three subjects’ IGHV families
when starting with a single IgGRdb allele per family (Table 1).
To understand how TIgGER achieves this performance, consider
sequences from the IGHV1 family in subject PGP1. In this case,
the first application of TIgGER was able to identify five of the
correct novel alleles and reassign the sequences to the better
allele (Figure 4, first and second panels). This success was due
to the fact that the mutation ranges of interest (i.e., the mutation
windows described in Figure 1) differed for many of the novel
alleles.We expect this will generally be true, and since the number
of positions differentiating different novel alleles from a shared
most-similar IgGRdb allele varies, relevant mutation windows

of alleles to be discovered are unlikely to overlap and result
in a dilution of signal. Nevertheless, a single run of TIgGER
was not able to detect all of the IGHV alleles. TIgGER was
then run a second time using the new IgGRdb and assignments
determined from the first run, leading to the identification of
five additional novel alleles. This second iteration discovered
less-used alleles, as the initial group of sequences assigned to
the starting allele was broken into smaller subgroups (Figure 4,
third panel). Three low-frequency alleles from two genes present
when running TIgGER with access to the full IgGRdb (Figure 4,
fourth panel) remained undiscovered after repeated iterations.
The difficulty of discovering alleles that are expressed at low
frequency highlights the dependence of TIgGER’s performance
on sequencing depth. For subject 420IV, who had the largest
sequencing depth (112K sequences), TIgGER detected 55 alleles
out of the 58 in the genotype (95%). Subject hu420143 had 80K
sequences and TIGgER detected 77% of alleles, while subject
PGP1 had 55K sequences and TIgGER detected 66% of alleles.
However, even at lower sequencing depth, TIgGER was able
to discover alleles that were far away from known alleles. For
example, for PGP1 (shown in Figure 4), the inferred “new”
alleles in the first iteration were 29–49 SNPs away from the
starting germline repertoire, and 19–30 SNPs away in the second
iteration. This could not be done with the previous version of
TIgGER. Overall, these results demonstrate that TIgGER can be
run iteratively to discover a large fraction of the IGHV alleles
carried by an individual (with better performance at higher
sequence depth), even when there is very little prior knowledge
of the set of alleles in the population.

Bayesian Inference of BCR Genotypes Can
Differentiate Subjects
Given the diverse nature of the IGHV locus (7), we expected
that genotypes inferred by TIgGER would vary across unrelated
subjects, but should be the same within the five pairs of
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monozygotic twins. While the genotypes that were constructed
for the individuals in this study were observed to be unique
across subjects, the inferred genotypes of the monozygotic
twin pairs were similar but not identical (Figure 3). Due to
the relatively small number of sequences, not all novel alleles
discovered in one twin were also discovered in the other.
However, for the majority of genes, TIgGER assigned the same
genotype alleles to each twin. Additionally, hierarchical clustering
(using Ward’s method) of the genotypes properly grouped pairs
of twins and excluded the genotypes of the other subjects
(Figure 3, top).

In order to quantify our confidence in the assignment of
genotypes, a Bayesian approach to genotyping was developed.
This method analyzes the posterior probabilities of possible
allele distributions, considering up to four distinct alleles per
V. The posterior probabilities for these four possible models
are compared and a Bayes factor is calculated for the two
most probable models (see Methods). This Bayes factor reflects
our confidence in the genotyping call of the method, and
different models (i.e., different combinations of alleles) can be
compared in a quantitative way. In the current implementation
of the Bayesian approach, up to four alleles are considered
(14), allowing for the possibility of a gene duplication with
both loci being heterozygous (see Methods). This Bayesian
method was applied separately to 10 independent samples
from subjects PGP1, hu420143, and 420IV (corresponding to
10 different time-points pre- and post-influenza vaccination)
to test if we could confidently group samples from the same
subject. The similarity of these personalized genotypes (for
each combination of subject and time point) was estimated
by determining the Jaccard distance metric for each gene.
These individual gene distances were combined by calculating
a weighted average of them using the Bayes factors as weights
(see Methods). Using this distance metric, all samples from
the three subjects could be differentiated with perfect accuracy,
as the maximal weighted Jaccard distance of samples coming
from the same subject was lower than the distance between
samples coming from different subjects (Figure 5). Similar high
classification accuracy was found for a wide range of model
parameters showing the robustness of this approach. Overall,
this Bayesian approach enables us to relax the strict cutoff
criterion used by TIgGER in the previous sections (wherein the
minimum number of alleles explaining 88% (7/8) of apparently-
unmutated sequences are included in the genotype) to decide
whether an allele should be included in an individual’s genotype
or not.

To compare the new Bayesian approach with the previously
used method, we assessed the ability of each method to generate
matching IGHV genotypes for each of the five twin pairs that
were part of our cohort of 31 individuals. Genotype similarity
was computed as the average Jaccard distance between the
genotypes of each twin pair (similar to the dendrogram in
Figure 3). As the certainty threshold (K) is increased, the
genotypes of the twin pairs become more and more similar
(Figure 6). At K ≥ 1, the genotypes inferred by the Bayesian
method are a significantly better match than those inferred by the
non-Bayesian method.

METHODS

Sample Preparation, Sequencing, and
Processing of Influenza Vaccination Data
Data from subjects PGP1, hu420143, and 420IV result from
previously published BCR sequencing from blood samples taken
at ten times relative to the administration of an influenza vaccine:
−8 days, −2 days, −1 h, +1 h, +1 day, +3 days, +7 days, +14
days, +21 days, and +28 days. Peripheral blood was collected
under the approval of the Personal Genome Project. Samples
were prepared, sequenced and processed as described (23).
Briefly, VH mRNA was selectively amplified by PCR using IGHV
and IGHC region specific primers followed by sequencing on
the Roche 454 platform. Sequence data were quality controlled
and processed using custom scripts and aligned against the
IMGT germline references using IMGT/HighV-QUEST version
v1.1.1 (12).

Sample Preparation, Sequencing, and
Processing of Multiple Sclerosis Data
Samples from subjects M2, M3, M4, and M5 were collected
from autopsy material that included central nervous system
and draining cervical lymph node tissue derived from patients
with multiple sclerosis (24). Sequencing was performed as
described in (24). Briefly, VH mRNA was selectively amplified
by PCR using IGHV and IGHC region specific primers with
15 nucleotide unique molecular identifiers (UMIs). Amplicons
where sequencing on the Illumina MiSeq platforming using the
2 × 250 kit according to the manufacturer’s recommendations.
The version of the sequence data used here was previously used
to generate lineage tree topologies as simulation constraints (25).
Briefly, sequence data was processed using pRESTO v0.3 (11) and
Change-O v0.3.4 (21). Reference alignment was performed using
IMGT/HighV-QUEST v1.1.1 (12) with the February 4th, 2013
version of the IMGT gene database.

Sample Preparation, Sequencing, and
Processing of Healthy Monozygotic Twin
Pair Data
Subjects with identifiers beginning with TW represent five
pairs of monozygotic twins whose BCR repertoires were
previously sequenced from blood samples (33). Peripheral
blood was collected after obtaining written informed consent
from all subjects, who participated in studies of licensed
seasonal influenza vaccines under the Institutional Review Board
approval at the Stanford University School of Medicine. Samples
were prepared, sequenced and processed as described (33).
Briefly, FACS sorted cells were used to prepare sequencing

libraries from RNA using a protocol employing 5
′
RACE and

10 nucleotide UMIs. Libraries were sequencing on the Illumina
MiSeq platform using the 2 × 300 kit according to the
manufacturer’s recommendations. UMIs and constant region
primers were exacted from the raw reads using VDJPipe (34).
Further processing was performed using usearch (35), pRESTO
(11), Change-O (21), and IMGT/HighV-QUEST v1.3.1 (12).
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FIGURE 5 | Bayesian inference of the subject-specific IGHV genotype identifies the same subject across independent samples in an influenza vaccination time

course. BCR repertoire sequencing was carried out from a total of 10 blood samples taken before and after influenza vaccination of three subjects (PGP1, 420IV, and

hu420143) as part of a previous study (23). The Bayesian model was applied to the data from each of 10 time points from each individual separately to determine a

subject-specific IGHV genotype. The distance (colors) between each pair of inferred genotypes (rows/columns; numbered 1–30, labeled by color according to subject)

is based on the Jaccard distance of the alleles of each gene (see Methods for details).

Sample Preparation, Sequencing, and
Processing of Myasthenia Gravis Data and
Associated Healthy Controls
Subjects with identifiers beginning AR, MK, and HD are from
patients with myasthenia gravis with autoantibodies targeting
the acetylcholine receptor (AR) or muscle specific kinase (MK)
or from healthy controls (HD). Peripheral blood was obtained
from subjects after acquiring informed consent and the study was
approved by the Human Research Protection Program at Yale
School of Medicine. Naive and memory B cells sorted from these
subjects were previously published (26). New data described
here includes unsorted B cells from an additional subject MK06,
and unsorted B cells from all subjects described in (26). All
samples were prepared, sequenced and processed as previously

described (26). Briefly, unsorted or FACS-sorted cells were used
to prepare VH and VL sequencing libraries from mRNA using a

protocol employing 5
′
RACE and 17 nucleotide UMIs. Libraries

were sequenced on the Illumina MiSeq platform with the 2
× 300 kit according to the manufacturer’s recommendations,

except for performing 325 cycles for read 1 and 275 cycles

for read 2. Sequence data was processed using pRESTO
v0.5.0 (11), Change-O v0.3.0 (21), SHazaM v0.1.2 (21), and

IMGT/HighV-QUEST v1.4.0 (12) with the July 7, 2015 version

of the IMGT gene database. Sequence data was deposited in

the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra)
under BioProject accession PRJNA338795; sequencing runs used

for this study are denoted A79HP, AAYFK, AAYHL, AB0RF,
and AB8KB.
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FIGURE 6 | The Bayesian method improves the similarity of IGHV genotypes inferred for twin pairs. The Jaccard distance was calculated for each IGHV gene for each

twin pair, and was averaged over all genes. This calculation was carried out for the basic cutoff method of TIgGER (Non-Bayesian) or using the genotype from the

Bayesian method (Bayesian). In the Bayesian cases, only genes with certainty above the indicated confidence level (K ≥ 0, 1, or 2) were taken into account. Each

point corresponds to a twin pair.

Genomic Sequencing of Predicted IGHV
Alleles
Genomic DNA was extracted using the Qiagen DNeasy Blood
& Tissue Kit from the peripheral blood of subjects MK04,
MK05, and MK06; peripheral blood was collected as part of
the previously published myasthenia gravis study (26). PCR
primers were designed to fully amplify the exons and introns
of each target IGHV gene locus (IGHV1-2, IGHV1-8, IGHV3-
20, and IGHV1-69) from genomic DNA; sequences for each
primer set are provided in Table S2. PCR amplicons for each
gene were generated individually from respective genomic DNA
samples using the Qiagen HotStarTaq Kit (Cat. No. 203443),
and subsequently cloned using the Invitrogen pCR4 TOPO
TA kit (Cat. No. K457502). DNA was isolated from 4 to 15
clones per gene target, and sequenced from both ends using
Sanger. Sequence chromatograms were viewed and analyzed
using SeqMan Pro (DNASTAR 13.0.2).

The Updated TIgGER Algorithm
The original TIgGER algorithm (8) was modified so that, for any
set of sequences isolated from a single subject and best aligning
to the same IgGRdb allele, the range of mutation counts analyzed
would begin at the most frequent positive mutation count m
and end at a mutation count of m + 9 (If m = 1, the updated
algorithm will behave as the original). Additionally, any other
mutation count at least 1/8 of the most frequent defines the start
of a mutation range that is additionally analyzed, for improved
sensitivity in cases where multiple novel alleles are assigned to the
same IgGRdb allele; this mutation count may be either greater or
less than the most frequent.

Application of TIgGER to a Human Cohort
For novel allele detection and genotype inference, TIgGER
was applied on functional, unique sequences with detectable
junction sequences. For each sample, the “findNovelAlleles”
function with default parameters was applied with IMGT
IGHV germline reference (downloaded on May 17, 2018).
Next, the set of putative novel alleles were used in genotype
inference using the “inferGenotype” function with default
parameters. Alleles that were included in the resulting
genotype, but were not present in the IgGRdb, were considered
novel alleles.

Calculation of Distant Allele Detection
Sensitivity
Pooled pre-vaccination sequences from subject PGP1 (i.e.,
samples taken at −8 days, −2 days, −1 h relative to vaccination
and sequenced on the 454 platform) were used. This dataset was
chosen because it did not show significant clonal expansions
in response to vaccination; did not have sequencing primers

extending into the 5
′
ends of sequences, as was the case in the

multiple sclerosis and twin subjects, giving us confidence in the
true set of alleles carried by the subject. For all sequences that
best aligned to a particular IGHV germline allele, a number
of positions n between IMGT-numbered positions 1 and 312
(inclusive) were modified (“mutated”) in the germline being used
by the updated TIgGER algorithm. Mutations of a nucleotide to
itself we not allowed, in order to ensure n differences between
the starting germline and the resulting sequence. This was done
100 times for each n between 1 and 30, to simulate a situation
in which the nearest IgGRdb was n polymorphisms away from

Frontiers in Immunology | www.frontiersin.org 9 February 2019 | Volume 10 | Article 129

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gadala-Maria et al. Identification of Subject-Specific Immunoglobulin Alleles

the novel allele to be discovered, with each iteration using a
separate random set of polymorphisms. The fraction of times
the correct allele was detected by TIgGER for each value of
n vs. those detected at n = 0 (i.e., when TIgGER is allowed
access to all IgGRdb alleles) was averaged across each germline
sequence tested to determine the sensitivity as a function of n.
For example, if for n = 15, 100/100 mutated variants led to the
proper detection of the germline allele for 19 of 38 alleles, and
in the remaining 19 alleles 90/100 mutated variants led to the
proper detection of the germline allele in each case, then the
sensitivity at n= 15 would be calculated as (19∗100%+ 19∗90%)
/ 38= 95%.

Bayesian Approach to Genotyping
A Bayesian framework with a Dirichlet prior for the multinomial
distribution was adapted to genotype inference. To model

the possible allele distributions, up to four distinct alleles

were allowed in an individual’s genotype (e.g., four alleles

could correspond to a gene duplication with both loci being
heterozygous). From the observed allelic frequencies, a posterior

probability is calculated for a continuum of underlying biological

models that set allelic distribution for each gene. For example,

a gene can include two equally abundant alleles, or one allele

that is twice as abundant as the second one due to gene
duplication in one of the chromosomes (17). Prior distributions
were initially set to reflect naive biological assumptions about
the underlying dynamics that determine the allelic usage (see
Figure S1). Following this initial approach, priors were modified
by fitting empirically genotypes of the three subjects (all time
points combined): PGP1, hu420143, and 420IV, constructed
using the naive priors. The posterior probability for each model

is given by: P
(

Eθ
∣

∣

∣

EX
)

Dirich
=

P
(

EX
∣

∣Eθ
)

multinom
�P

(

Eθ
)

Dirich

P
(

EX
) , where Eθ is

the allele probability distribution and EX is the counts for the
top four alleles. The certainty of the most probable model was

calculated using a Bayes factor, K =
P
(

Eθ=EH1st+ E∈|EX
)

P
(

Eθ=EH2nd+ E∈|EX
) , where EH1st

and EH2nd correspond, to themost and second-most likelymodels,
respectively. The larger the K, the greater the certainty in the
model. For clarity, consider a case where the most abundant
four alleles appeared in 334, 295, 209, and 1 independent
rearrangements (see Table S3). In this case, EX is (334,295,209,1),
the expected allele probability distributions for each of the

different models are
−→
HH = (1, 0, 0, 0) (homozygous),

−−→
HD1 =

(0.5, 0.5, 0, 0),
−−→
HD2 = (0.67, 0.33, 0, 0), or

−−→
HD3 = (0.75, 0.25, 0, 0)

(heterozygous with two alleles),
−→
HT1 = (0.33, 0.33, 0.33, 0) or

−→
HT2 = (0.5, 0.25, 0.25, 0) (heterozygous with three alleles), and
−→
HQ = (0.25, 0.25, 0.25, 0.25) (heterozygous with four alleles,

see Figure S1). E∈ is set to (1,1,1,1)
100 . In this case, the resulting

likelihoods for the four different models are: log (KH) = −1000,
log (KD) = −218.3, log (KT) = −3.17, and log (KQ) = −103.2,
which results in the genotype call of three alleles with log (K)
= 106.34. An output example of the Bayesian method is shown
in Table S3.

Calculation of the Jaccard Distance
To estimate distance between genotypes of two subjects a Jaccard
distance was calculated in the following way: (i) for each gene,
oneminus the ratio between the number of shared alleles over the
number of unique alleles from both samples was calculated. For
example, for two genotypes with allele assignments a and b the

Jaccard distance was defined as 1 − a∩b
a∪b

. Genes that appeared in
only one of the samples were excluded. (ii) The overall distance
between two genotypes was calculated by a weighted average of
all individual gene distances, where the weights are the mean of
the two Bayes factors (K) for each.

DISCUSSION

While the original TIgGER algorithm was very successful at
detecting novel alleles, a significant limitation was that it could
not detect novel V gene alleles that differed from known
germline alleles by more than five SNPs. In addition, the original
TIgGER genotyping approach was dependent on an arbitrary
cutoff value for including genes in each subject’s genotype, and
did not quantify the certainty of these genotype calls. Here
we have described how modifying the “mutation window” in
which the algorithm searches for mutation patterns that are
indicative of polymorphisms was able to overcome the five
mutations limitation. We also developed a Bayesian approach
for genotyping that does not depend on a strict cutoff and
provides a certainty level for each genotype call. We applied
the updated algorithm to AIRR-seq data from 26 genetically
distinct individuals (23, 24, 26, 33), and were able to identify
28 novel IGHV alleles. Although we showed on simulated data
that TIgGER could detect alleles an arbitrary distance from
known alleles, the most distant novel allele identified in this
cohort contained three polymorphisms relative to the closest
known IgGRdb allele. Based on the distances between alleles
in the IMGT IgGRdb, we previously showed that ∼10% of
these alleles differ by more than five SNPs from the nearest
IgGRdb allele (8). While this does not directly imply that 10%
of novel alleles will have more than 5 SNPs, we do expect that as
TIgGER continues to be applied to datasets from more subjects,
especially ethnically diverse populations, such alleles will
be discovered.

The IMGT gene IgGRdb maintains its requirement of direct
DNA-based allele evidence of any alleles to be included in
the IgGRdb. We generated such validation for several TIgGER
predictions, resulting in the inclusion of three novel IGHV
gene alleles in IMGT: IGHV1-2∗06, IGHV3-20∗03, and IGHV1-
69∗17. Validation of the other gene alleles discovered via AIRR-
seq by TIgGER will be a priority going forward. While the
IMGT standard for inclusion is intended to help ensure the
quality of the IgGRdb, it inhibits the ability of the IgGRdb
to benefit from the large number of non-IgGRdb alleles that
are being rapidly discovered from AIRR-seq analyses. The
Germline Gene Database (GLDB) Working Group of the AIRR
Community is currently working to develop alternative criteria
for judging the validity of Ig genes that are inferred from
AIRR-seq data (22). In the meantime, we have chosen to
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deposit the novel alleles we have detected into an alternative
IgGRdb, the Immunoglobulin Polymorphism IgGRdb (IgPdb)
(36). Dependency on the completeness of IgGRdb can be reduced
by TIgGER, as we demonstrated in deriving the majority of
several subjects’ germline IGHV alleles starting from only a
single gene allele per family. Further, a multiple alignment of
the several sequences most-observed in a blood-based repertoire
sample may be sufficient to remove the dependency on having a
IgGRdb allele of each family, allowing for a more fully IgGRdb-
blind derivation of alleles and V(D)J genotypes. Besides detecting
several novel IGHV gene alleles in the genotypes of the 32
subjects in this study, we observed that no two IGHV genotypes
appeared to be the same (37, 38), barring those of the five
pairs of monozygotic twins. It may be the case that IGHV
genotypes alone are sufficient to uniquely identify a subject. This
would additionally be improved if IGKV/IGLV genotypes, as
well as D and J genotype were also determined, and this is an
important area of future work. However, we observed notable
variation even in the inferred genotypes of monozygotic twins
due to the depth of sequencing. Though we adapted a Bayesian
approach that presents an additional criterion for evaluating
the certainty level of the genotype (based on the K value), in
order to accurately differentiate samples coming from different
individuals additional work is still required. One direction for
further improvement of sample differentiation, was suggested
recently by applying a Bayesian approach to haplotype inference
(38). We were able to accurately separate samples based on
their genotypes from the subjects in the influenza time course,
but these methods are affected by the sequencing depth. The
influence of sequencing depth on the genotype call and its
associated K value, was assessed on a single gene and is shown in
Figure S2. It remains unclear how to adjust the Jaccard distance
cutoff on the basis of sequencing depth, and we hope to explore
this question and integrate dataset-tailored cutoffs into TIgGER’s
genotyping functionality in the future.

Overall, we have expanded upon the capabilities of the
TIgGER algorithm, demonstrated its persistent need in the
analysis of AIRR-seq data, and hope that it will continue to be of
use to the AIRR-seq community. The latest version of TIgGER is
available for download as an R package from The Comprehensive
R Archive Network (CRAN; http://cran.r-project.org) with
additional documentation available at http://tigger.readthedocs.
io. TIgGER is part of the Immcantation framework (http://
immcantation.org), which provide a start-to-finish analytical
ecosystem for high-throughput AIRR-seq data analysis, and is
also available through the Immcantation Docker container builds
at https://hub.docker.com/r/kleinstein/immcantation.
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