11 research outputs found

    Spatio-temporal properties of motion detectors matched to low image velocities in hovering insects

    Get PDF
    AbstractOur recent study [O'Carroll et al. (1996). Nature 382, 63–66) described a correlation between the spatio-temporal properties of motion detecting neurons in the optic lobes of flying insects and behaviour. We consider here theoretical properties of insect motion detectors at very low image velocities and measure spatial and temporal sensitivity of neurons in the lobula complex of two specialised hovering insects, the bee-fly Bombylius and the hummingbird hawkmoth, Macroglossum. The spatio-temporal optima of direction-selective neurons in these insects lie at lower velocities than those of other insects which we have studied, including large syrphid flies, which are also excellent hoverers. We argue that spatio-temporal optima reflect a compromise between the demands of diverse behaviour, which can involve prolonged periods of stationary, hovering flight followed by spectacular high speed pursuits of conspecifics. Males of the syrphid Eristalis which engage in such behaviour, have higher temporal frequency optima than females. High contrast sensitivity in these flies nevertheless results in reliable responses at very low image velocities. Neurons of Bombylius have two distinct velocity optima, suggesting that they sum inputs from two classes of motion correlator with different time constants. This also provides sensitivity to a large range of velocities

    Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimize vision at different light levels

    Get PDF
    How neural form and function are connected is a central question of neuroscience. One prominent functional hypothesis, from the beginnings of neuroanatomical study, states that laterally extending dendrites of insect lamina monopolar cells (LMCs) spatially integrate visual information. We provide the first direct functional evidence for this hypothesis using intracellular recordings from type II LMCs in the hawkmoth Macroglossum stellatarum. We show that their spatial receptive fields broaden with decreasing light intensities, thus trading spatial resolution for higher sensitivity. These dynamic changes in LMC spatial properties can be explained by the density and lateral extent of their dendritic arborizations. Our results thus provide the first physiological evidence for a century-old hypothesis, directly correlating physiological response properties with distinctive dendritic morphology.Clemence Duea, Anna Zierscha, Moira Walsha and Emily Duivestey

    Dragonfly Neurons Selectively Attend to Targets Within Natural Scenes

    Get PDF
    Aerial predators, such as the dragonfly, determine the position and movement of their prey even when both are moving through complex, natural scenes. This task is likely supported by a group of neurons in the optic lobe which respond to moving targets that subtend less than a few degrees. These Small Target Motion Detector (STMD) neurons are tuned to both target size and velocity, whilst also exhibiting facilitated responses to targets traveling along continuous trajectories. When presented with a pair of targets, some STMDs generate spiking activity that represent a competitive selection of one target, as if the alternative does not exist (i.e., selective attention). Here, we describe intracellular responses of CSTMD1 (an identified STMD) to the visual presentation of targets embedded within cluttered, natural scenes. We examine CSTMD1 response changes to target contrast, as well as a range of target and background velocities. We find that background motion affects CSTMD1 responses via the competitive selection between features within the natural scene. Here, robust discrimination of our artificially embedded “target” is limited to scenarios when its velocity is matched to, or greater than, the background velocity. Additionally, the background’s direction of motion affects discriminability, though not in the manner observed in STMDs of other flying insects. Our results highlight that CSTMD1’s competitive responses are to those features best matched to the neuron’s underlying spatiotemporal tuning, whether from the embedded target or other features in the background clutter. In many scenarios, CSTMD1 responds robustly to targets moving through cluttered scenes. However, whether this neuronal system could underlie the task of competitively selecting slow moving prey against fast-moving backgrounds remains an open question.Bernard John Essex Evans, David Charles O, Carroll, Joseph Mahandas Fabian, and Steven D. Wiederma

    A target-detecting visual neuron in the dragonfly locks-on to selectively attended targets

    Get PDF
    The visual world projects a complex and rapidly changing image onto the retina of many animal species. This presents computational challenges for those animals reliant on visual processing to provide an accurate representation of the world. One such challenge is parsing a visual scene for the most salient targets, such as the selection of prey amidst a swarm. The ability to selectively prioritize processing of some stimuli over others is known as 'selective attention'. We recently identified a dragonfly visual neuron called 'Centrifugal Small Target Motion Detector 1' (CSTMD1) that exhibits selective attention when presented with multiple, equally salient targets. Here we conducted in vivo, electrophysiological recordings from CSTMD1 in wild-caught male dragonflies (Hemicordulia tau), whilst presenting visual stimuli on an LCD monitor. To identify the target selected in any given trial, we uniquely modulated the intensity of the moving targets (frequency-tagging). We found that the frequency information of the selected target is preserved in the neuronal response, whilst the distracter is completely ignored. We also show that the competitive system that underlies selection in this neuron can be biased by the presentation of a preceding target on the same trajectory, even when it is of lower contrast than an abrupt, novel distracter. With this improved method for identifying and biasing target selection in CSTMD1, the dragonfly provides an ideal animal model system to probe the neuronal mechanisms underlying selective attention.Benjamin H. Lancer, Bernard J.E. Evans, Joseph M. Fabian, David C. O’Carroll, and Steven D. Wiederma

    Preattentive facilitation of target trajectories in a dragonfly visual neuron

    Get PDF
    The ability to pursue targets in visually cluttered and distraction-rich environments is critical for predators such as dragonflies. Previously, we identified Centrifugal Small-Target Motion Detector 1 (CSTMD1), a dragonfly visual neuron likely involved in such target-tracking behaviour. CSTMD1 exhibits facilitated responses to targets moving along a continuous trajectory. Moreover, CSTMD1 competitively selects a single target out of a pair. Here, we conducted in vivo, intracellular recordings from CSTMD1 to examine the interplay between facilitation and selection, in response to the presentation of paired targets. We find that neuronal responses to both individual trajectories of simultaneous, paired targets are facilitated, rather than being constrained to the single, selected target. Additionally, switches in selection elicit suppression which is likely an important attribute underlying target pursuit. However, binocular experiments reveal these results are constrained to paired targets within the same visual hemifield, while selection of a target in one visual hemifield establishes ocular dominance that prevents facilitation or response to contralaterally presented targets. These results reveal that the dragonfly brain preattentively represents more than one target trajectory, to balance between attentional flexibility and resistance against distraction.Benjamin H. Lancer, Bernard J. E. Evans, Joseph M. Fabian, David C. O, Carroll, Steven D. Wiederma

    Afterimages in fly motion vision

    Get PDF
    Copyright © 2002 Published by Elsevier Science Ltd. All rights reserved.Afterimage-like effects modulate the responses of fly wide-field motion-sensitive cells following adaptation to stationary or slowly moving patterns. The origin of these afterimages is unclear. They have been interpreted as either the result of adaptation in the early visual system or as a direct consequence of the correlation scheme of motion detection. Using a combination of intracellular recording and computer modelling, we find that afterimage-like effects cannot be satisfactorily explained by a simple version of the correlation model previously proposed by Egelhaaf and Borst (J. Opt. Soc. Am. A 6 (1) (1989) 116). We propose a modified variant of the correlation model featuring a short delay filter and temporal high-pass filtering prior to motion correlation. Our model gives superior predictions of afterimage-like effects induced by a range of stimuli. Our model also predicts changes in cells' image step responses following exposure to motion, suggesting that previous experimental evidence for the "shortening delay" theory of motion adaptation (Biol. Cybern. 54 (1986) 223; Visual Neurosci. 14 (4) (1997) 741) should be re-interpreted in terms of afterimage effects.R. A. Harris, and D. C. O'Carrollhttp://www.elsevier.com/wps/find/journaldescription.cws_home/263/description#descriptio

    Adolescent suicide and suicidal behavior

    No full text

    Appendix 2.

    No full text

    Critical care usage after major gastrointestinal and liver surgery: a prospective, multicentre observational study

    No full text
    Background Patient selection for critical care admission must balance patient safety with optimal resource allocation. This study aimed to determine the relationship between critical care admission, and postoperative mortality after abdominal surgery. Methods This prespecified secondary analysis of a multicentre, prospective, observational study included consecutive patients enrolled in the DISCOVER study from UK and Republic of Ireland undergoing major gastrointestinal and liver surgery between October and December 2014. The primary outcome was 30-day mortality. Multivariate logistic regression was used to explore associations between critical care admission (planned and unplanned) and mortality, and inter-centre variation in critical care admission after emergency laparotomy. Results Of 4529 patients included, 37.8% (n=1713) underwent planned critical care admissions from theatre. Some 3.1% (n=86/2816) admitted to ward-level care subsequently underwent unplanned critical care admission. Overall 30-day mortality was 2.9% (n=133/4519), and the risk-adjusted association between 30-day mortality and critical care admission was higher in unplanned [odds ratio (OR): 8.65, 95% confidence interval (CI): 3.51–19.97) than planned admissions (OR: 2.32, 95% CI: 1.43–3.85). Some 26.7% of patients (n=1210/4529) underwent emergency laparotomies. After adjustment, 49.3% (95% CI: 46.8–51.9%, P<0.001) were predicted to have planned critical care admissions, with 7% (n=10/145) of centres outside the 95% CI. Conclusions After risk adjustment, no 30-day survival benefit was identified for either planned or unplanned postoperative admissions to critical care within this cohort. This likely represents appropriate admission of the highest-risk patients. Planned admissions in selected, intermediate-risk patients may present a strategy to mitigate the risk of unplanned admission. Substantial inter-centre variation exists in planned critical care admissions after emergency laparotomies

    Body mass index and complications following major gastrointestinal surgery: A prospective, international cohort study and meta-analysis

    No full text
    Aim Previous studies reported conflicting evidence on the effects of obesity on outcomes after gastrointestinal surgery. The aims of this study were to explore the relationship of obesity with major postoperative complications in an international cohort and to present a metaanalysis of all available prospective data. Methods This prospective, multicentre study included adults undergoing both elective and emergency gastrointestinal resection, reversal of stoma or formation of stoma. The primary end-point was 30-day major complications (Clavien–Dindo Grades III–V). A systematic search was undertaken for studies assessing the relationship between obesity and major complications after gastrointestinal surgery. Individual patient meta-analysis was used to analyse pooled results. Results This study included 2519 patients across 127 centres, of whom 560 (22.2%) were obese. Unadjusted major complication rates were lower in obese vs normal weight patients (13.0% vs 16.2%, respectively), but this did not reach statistical significance (P = 0.863) on multivariate analysis for patients having surgery for either malignant or benign conditions. Individual patient meta-analysis demonstrated that obese patients undergoing surgery formalignancy were at increased risk of major complications (OR 2.10, 95% CI 1.49–2.96, P < 0.001), whereas obese patients undergoing surgery for benign indications were at decreased risk (OR 0.59, 95% CI 0.46–0.75, P < 0.001) compared to normal weight patients. Conclusions In our international data, obesity was not found to be associated with major complications following gastrointestinal surgery. Meta-analysis of available prospective data made a novel finding of obesity being associated with different outcomes depending on whether patients were undergoing surgery for benign or malignant disease
    corecore