16,266 research outputs found

    New model for vortex-induced vibration of catenary riser

    Get PDF
    This paper presents a new theoretical model capable of predicting the vortex-induced vibration response of a steel catenary riser subject to a steady uniform current. The equations governing riser in-plane/out-ofplane (cross-flow/in-line) motion are based on a pinned beam-cable model accounting for overall effects of bending, extensibility, sag, inclination and structural nonlinearities. The empirically hydrodynamic model is based on nonlinear wake oscillators describing the fluctuating lift/drag forces. Depending on the potentially vortex-induced modes and system parameters, a reduced-order fluid-structure interaction model is derived which entails a significantly reduced computational time effort. Parametric results reveal maximum response amplitudes of risers, along with the occurrence of uni-modal lock-in phenomenon

    Florida's West Coast inlets: shoreline effects and recommended action

    Get PDF
    This report responds to the 1986 Beaches Bill which, in recognition of the potential deleterious impact on Florida's beaches of inlets modified for navigation, mandated a study of those inlets with identification of recommended action to reduce the impacts. This report addresses west Coast inlets; East Coast inlets are the subject of a companion report. There are 37 inlets along that portion of Florida's West Coast commencing from Pensacola Bay Entrance to Caxambas Pass at the south end of Marco Island. Compared to those on the East Coast, most West Coast inlets have not had the deleterious effects on the adjacent beaches, yet all modified inlets without proper management have the potential of impacting unfavorably on the adjacent shorelines. Moreover, at present there is interest in opening three West Coast entrances which either have been open in the past (Midnight Pass) or which have opened occasionally (Navarre Pass and Entrance to Phillips Lake). A review of inlets in their natural condition demonstrates the presence of a shallow broad outer bar across which the longshore transport Occurs. These shallow and shifting bar features were unsuitable for navigation which in many cases has led to the deepening of the channels and fixing with one or two jetty structures. Inlets in this modified state along with inappropriate maintenance practices have the potential of placing great ero$ional stress along the adjacent beaches. Moreover. channel dredging can reduce wave sheltering of the shoreline by ebb tidal shoals and alter the equilibrium of the affected shoreline segments. The ultimate in poor sand management practice is the placement of good quality beach sand in water depths too great for the sand to reenter the longshore system under natural forces; depths of 12 ft. or less are considered appropriate for Florida in order to maintain the sand in the system. With the interference of the nearshore sediment transport processes by inlets modified for navigation, if the adjacent beaches are to be stabilized there must be an active monitoring program with commitment to placement of dredged material of beach quality on shoreline segments of documented need. Several East Coast inlets have such transfer facilities; however. the quantities of sand transferred should be increased. Although an evolution and improvement in the technical capability to manage sand resources in the vicinity of inlets is expected, an adequate capability exists today and a concerted program should be made to commence a scheduled implementation of this capability at those entrances causing greatest erosional stress on the adjacent shorelines. A brief summary review for each of the 37 West Coast inlets is presented including: a scaled aerial photograph, brief historical information, several items related to sediment losses at each inlet and special characteristics relevant to State responsibilities. For each inlet, where appropriate, the above infor~tion is utilized to develop a recommenced action. (PDF has 101 pages.

    Nonlinear multi-mode interactions in subsea risers undergoing vortex-induced vibrations

    Get PDF
    This paper investigates nonlinear multi-mode interactions in subsea risers undergoing vortex-induced vibrations based on a computationally efficient reduced-order fluid-structure interaction model. Cross-flow responses as a result of a steady uniform current are considered. The geometrically nonlinear equations of riser motion are coupled with nonlinear wake oscillators which have been modified to capture the effect of initial curvatures of curved cylinder and to approximate the space-time varying hydrodynamic lift forces. The main objectives are to provide new insights into the vortex-induced vibration characteristics of risers under external and internal resonances and to distinguish nonlinear dynamic behaviors between curved catenary and straight toptensioned risers. The analyses of multi-mode contributions, lock-in regimes, response amplitudes, resonant nonlinear modes and curvatures are carried out and several interesting aspects are highlighted

    Using Intelligent Agents to Manage Business Processes

    No full text
    This paper describes work undertaken in the ADEPT (Advanced Decision Environment for Process Tasks) project towards developing an agent-based infrastructure for managing business processes. We describe how the key technology of negotiating, service providing, autonomous agents was realised and demonstrate how this was applied to the BT business process of providing a customer quote for network services

    Vortex-induced vibration of catenary riser: reduced-order modeling and lock-in analysis using wake oscillator

    Get PDF
    A new reduced-order model capable of analyzing the vortex-induced vibration of catenary riser in the ocean current has been developed. This semi analytical-numerical approach is versatile and allows for a significant reduction in computational effort for the analysis of fluid-riser interactions. The incoming current flow is assumed to be steady, uniform, unidirectional and perpendicular to the riser plane of initial equilibrium curvatures

    Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits

    Full text link
    Quantum bits, or qubits, are an example of coherent circuits envisioned for next-generation computers and detectors. A robust superconducting qubit with a coherent lifetime of OO(100 μ\mus) is the transmon: a Josephson junction functioning as a non-linear inductor shunted with a capacitor to form an anharmonic oscillator. In a complex device with many such transmons, precise control over each qubit frequency is often required, and thus variations of the junction area and tunnel barrier thickness must be sufficiently minimized to achieve optimal performance while avoiding spectral overlap between neighboring circuits. Simply transplanting our recipe optimized for single, stand-alone devices to wafer-scale (producing 64, 1x1 cm dies from a 150 mm wafer) initially resulted in global drifts in room-temperature tunneling resistance of ±\pm 30%. Inferring a critical current IcI_{\rm c} variation from this resistance distribution, we present an optimized process developed from a systematic 38 wafer study that results in << 3.5% relative standard deviation (RSD) in critical current (σIc/Ic\equiv \sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle) for 3000 Josephson junctions (both single-junctions and asymmetric SQUIDs) across an area of 49 cm2^2. Looking within a 1x1 cm moving window across the substrate gives an estimate of the variation characteristic of a given qubit chip. Our best process, utilizing ultrasonically assisted development, uniform ashing, and dynamic oxidation has shown σIc/Ic\sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle = 1.8% within 1x1 cm, on average, with a few 1x1 cm areas having σIc/Ic\sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle << 1.0% (equivalent to σf/f\sigma_{f}/\left\langle f \right\rangle << 0.5%). Such stability would drastically improve the yield of multi-junction chips with strict critical current requirements.Comment: 10 pages, 4 figures. Revision includes supplementary materia

    Violation of the Leggett-Garg inequality with weak measurements of photons

    Full text link
    By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements, and the violation of realism and non-intrusiveness of measurements. A quantitative formulation of the latter concept is expressed in terms of a Leggett-Garg inequality for the outcomes of subsequent measurements of an individual quantum system. We experimentally violate the Leggett-Garg inequality for several measurement strengths. Furthermore, we experimentally demonstrate that there is a one-to-one correlation between achieving strange weak values and violating the Leggett-Garg inequality.Comment: 5 pages, 4 figure

    Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines

    Get PDF
    The similarity of quasar line spectra has been taken as an indication that the emission line clouds have preferred parameters, suggesting that the environment is subject to a fine tuning process. We show here that the observed spectrum is a natural consequence of powerful selection effects. We computed a large grid of photoionization models covering the widest possible range of cloud gas density and distance from the central continuum source. For each line only a narrow range of density and distance from the continuum source results in maximum reprocessing efficiency, corresponding to ``locally optimally-emitting clouds'' (LOC). These parameters depend on the ionization and excitation potentials of the line, and its thermalization density. The mean QSO line spectrum can be reproduced by simply adding together the full family of clouds, with an appropriate covering fraction distribution. The observed quasar spectrum is a natural consequence of the ability of various clouds to reprocess the underlying continuum, and can arise in a chaotic environment with no preferred pressure, gas density, or ionization parameter.Comment: 9 pages including 1 ps figure. LaTeX format using aaspp4.st

    The ATLAS-SPT Radio Survey of Cluster Galaxies

    Get PDF
    Using a high-performance computing cluster to mosaic 4,787 pointings, we have imaged the 100 sq. deg. South Pole Telescope (SPT) deep-field at 2.1 GHz using the Australian Telescope Compact Array to an rms of 80 μ\muJy and a resolution of 8". Our goal is to generate an independent sample of radio-selected galaxy clusters to study how the radio properties compare with cluster properties at other wavelengths, over a wide range of redshifts in order to construct a timeline of their evolution out to z1.3z \sim 1.3. A preliminary analysis of the source catalogue suggests there is no spatial correlation between the clusters identified in the SPT-SZ catalogue and our wide-angle tail galaxies.Comment: 9 pages, 4 figures. Submitted to Proceedings of Science for "The many facets of extragalactic radio surveys: towards new scientific challenges", Bologna, Italy 20-23 October 2015 (EXTRA-RADSUR2015

    Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies

    Get PDF
    Observations of novae at radio frequencies provide us with a measure of the total ejected mass, density profile and kinetic energy of a nova eruption. The radio emission is typically well characterized by the free-free emission process. Most models to date have assumed spherical symmetry for the eruption, although it has been known for as long as there have been radio observations of these systems, that spherical eruptions are to simplistic a geometry. In this paper, we build bipolar models of the nova eruption, assuming the free-free process, and show the effects of varying different parameters on the radio light curves. The parameters considered include the ratio of the minor- to major-axis, the inclination angle and shell thickness (further parameters are provided in the appendix). We also show the uncertainty introduced when fitting spherical model synthetic light curves to bipolar model synthetic light curves. We find that the optically thick phase rises with the same power law (Sνt2S_{\nu} \propto t^2) for both the spherical and bipolar models. In the bipolar case there is a "plateau" phase -- depending on the thickness of the shell as well as the ratio of the minor- to major-axis -- before the final decline, that follows the same power law (Sνt3S_{\nu} \propto t^{-3}) as in the spherical case. Finally, fitting spherical models to the bipolar model synthetic light curves requires, in the worst case scenario, doubling the ejected mass, more than halving the electron temperature and reducing the shell thickness by nearly a factor of 10. This implies that in some systems we have been over predicting the ejected masses and under predicting the electron temperature of the ejecta.Comment: 9 pages, 6 figures, accepted for publication in ApJ, accompanying movie to figure 3 available at http://www.ast.uct.ac.za/~valerio/papers/radioI
    corecore