13,955 research outputs found

    Theories of Technological Progress and the British Textile Industry from Kay to Cartwright

    Get PDF
    Editada en la Fundación Empresa PúblicaLa industria textil británica continúa en el centro del debate sobre la revolución industrial. Las innovaciones técnicas en el período produjeron una aceleración extraordinaria del crecimiento del output y una considerable reducción de los precios de los tejidos. En este trabajo presentamos un estudio de la comunidad de los inventores responsables de la transformación tecnológica, lo que nos permite alcanzar una serie de conclusiones nuevas sobre el ritmo y dirección de la actividad innovadora durante la revolución industrialThe cotton textile industry remains central to all accounts of the first industrial revolution. Innovations in this period precipitated an extraordinary acceleration in the growth of output and a steep decline in the cost of producing all varieties of cloth. In this paper we outline an explanation through an analysis of the community of inventors responsible for the technological transformation, which enables us to offer some generalizations of the pace and pattern of the inventive activity in this period.Publicad

    Resolving the large scale spectral variability of the luminous Seyfert 1 galaxy 1H 0419-577: Evidence for a new emission component and absorption by cold dense matter

    Full text link
    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below ~1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was `X-ray bright' indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable `soft excess' then appears to be an artefact of absorption of the underlying continuum while the `core' soft emission can be attributed to recombination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.Comment: 34 pages, 15 figures, submitted to Ap

    Fe K emission and absorption features in XMM-Newton spectra of Mkn 766 - evidence for reprocessing in flare ejecta

    Full text link
    We report on the analysis of a long XMM-Newton EPIC observation in 2001 May of the Narrow Line Seyfert 1 galaxy Mkn 766. The 3-11 keV spectrum exhibits a moderately steep power law continuum, with a broad emission line at ~6.7 keV, probably blended with a narrow line at ~6.4 keV, and a broad absorption trough above ~8.7 keV. We identify both broad spectral features with reprocessing in He-like Fe. An earlier XMM-Newton observation of Mkn 766 in 2000 May, when the source was a factor ~2 fainter, shows a similar broad emission line, but with a slightly flatter power law and absorption at a lower energy. In neither observation do we find a requirement for the previously reported broad 'red wing' to the line and hence of reflection from the innermost accretion disc. More detailed examination of the longer XMM-Newton observation reveals evidence for rapid spectral variability in the Fe K band, apparently linked with the occurrence of X-ray 'flares'. A reduction in the emission line strength and increased high energy absorption during the X-ray flaring suggests that these transient effects are due to highly ionised ejecta associated with the flares. Simple scaling from the flare avalanche model proposed for the luminous QSO PDS 456 (Reeves etal. 2002) confirms the feasibility of coherent flaring being the cause of the strong peaks seen in the X-ray light curve of \mkn.Comment: 9 pages, 11 figures, submitted to MNRA

    Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits

    Full text link
    Quantum bits, or qubits, are an example of coherent circuits envisioned for next-generation computers and detectors. A robust superconducting qubit with a coherent lifetime of OO(100 μ\mus) is the transmon: a Josephson junction functioning as a non-linear inductor shunted with a capacitor to form an anharmonic oscillator. In a complex device with many such transmons, precise control over each qubit frequency is often required, and thus variations of the junction area and tunnel barrier thickness must be sufficiently minimized to achieve optimal performance while avoiding spectral overlap between neighboring circuits. Simply transplanting our recipe optimized for single, stand-alone devices to wafer-scale (producing 64, 1x1 cm dies from a 150 mm wafer) initially resulted in global drifts in room-temperature tunneling resistance of ±\pm 30%. Inferring a critical current IcI_{\rm c} variation from this resistance distribution, we present an optimized process developed from a systematic 38 wafer study that results in << 3.5% relative standard deviation (RSD) in critical current (σIc/Ic\equiv \sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle) for 3000 Josephson junctions (both single-junctions and asymmetric SQUIDs) across an area of 49 cm2^2. Looking within a 1x1 cm moving window across the substrate gives an estimate of the variation characteristic of a given qubit chip. Our best process, utilizing ultrasonically assisted development, uniform ashing, and dynamic oxidation has shown σIc/Ic\sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle = 1.8% within 1x1 cm, on average, with a few 1x1 cm areas having σIc/Ic\sigma_{I_{\rm c}}/\left\langle I_{\rm c} \right\rangle << 1.0% (equivalent to σf/f\sigma_{f}/\left\langle f \right\rangle << 0.5%). Such stability would drastically improve the yield of multi-junction chips with strict critical current requirements.Comment: 10 pages, 4 figures. Revision includes supplementary materia

    An XMM-Newton observation of the Narrow Line Seyfert 1 Galaxy, Markarian 896

    Get PDF
    XMM-Newton observations of the NLS1 Markarian 896 are presented. Over the 2-10 keV band, an iron emission line, close to 6.4 keV, is seen. The line is just resolved and has an equivalent width of ~170 eV. The broad-band spectrum is well modelled by a power law slope of gamma ~ 2.03, together with two blackbody components to fit the soft X-ray excess. Using a more physical two-temperature Comptonisation model, a good fit is obtained for an input photon distribution of kT ~ 60eV and Comptonising electron temperatures of ~0.3 and 200 keV. The soft excess cannot be explained purely through the reprocessing of a hard X-ray continuum by an ionised disc reflector.Comment: 6 pages, 4 figures, accepted by MNRA

    Time-reversal and super-resolving phase measurements

    Get PDF
    We demonstrate phase super-resolution in the absence of entangled states. The key insight is to use the inherent time-reversal symmetry of quantum mechanics: our theory shows that it is possible to \emph{measure}, as opposed to prepare, entangled states. Our approach is robust, requiring only photons that exhibit classical interference: we experimentally demonstrate high-visibility phase super-resolution with three, four, and six photons using a standard laser and photon counters. Our six-photon experiment demonstrates the best phase super-resolution yet reported with high visibility and resolution.Comment: 4 pages, 3 figure

    Manipulating biphotonic qutrits

    Get PDF
    Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement induced non-linearities can be employed to dramatically extend the range of possible transforms on biphotonic qutrits; the three level quantum systems formed by the polarisation of two photons in the same spatio-temporal mode. We fully characterise the biphoton-photon entanglement that underpins our technique, thereby realising the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.Comment: 4 pages, 4 figure

    Broadband modelling of short gamma-ray bursts with energy injection from magnetar spin-down and its implications for radio detectability

    Get PDF
    The magnetar model has been proposed to explain the apparent energy injection in the X-ray light curves of short gamma-ray bursts (SGRBs), but its implications across the full broadband spectrum are not well explored. We investigate the broadband modelling of four SGRBs with evidence for energy injection in their X-ray light curves, applying a physically motivated model in which a newly formed magnetar injects energy into a forward shock as it loses angular momentum along open field lines. By performing an order of magnitude search for the underlying physical parameters in the blast wave, we constrain the characteristic break frequencies of the synchrotron spectrum against their manifestations in the available multi-wavelength observations for each burst. The application of the magnetar energy injection profile restricts the successful matches to a limited family of models that are self-consistent within the magnetic dipole spin-down framework.We produce synthetic light curves that describe how the radio signatures of these SGRBs ought to have looked given the restrictions imposed by the available data, and discuss the detectability of these signatures with present-day and near-future radio telescopes. Our results show that both the Atacama Large Millimetre Array and the upgraded Very Large Array are now sensitive enough to detect the radio signature within two weeks of trigger in most SGRBs, assuming our sample is representative of the population as a whole. We also find that the upcoming Square Kilometre Array will be sensitive to depths greater than those of our lower limit predictions.Comment: 15 pages, 4 figures, 6 tables, accepted for publication in MNRA

    Disease risks from foods, England and Wales, 1996-2000.

    Get PDF
    Data from population-based studies and national surveillance systems were collated and analyzed to estimate the impact of disease and risks associated with eating different foods in England and Wales. From 1996 to 2000, an estimated 1,724,315 cases of indigenous foodborne disease per year resulted in 21,997 hospitalizations and 687 deaths. The greatest impact on the healthcare sector arose from foodborne Campylobacter infection (160,788 primary care visits and 15,918 hospitalizations), while salmonellosis caused the most deaths (209). The most important cause of indigenous foodborne disease was contaminated chicken (398,420 cases, risk [cases/million servings] = 111; case-fatality rate [deaths/100,000 cases] = 35, deaths = 141). Red meat (beef, lamb, and pork) contributed heavily to deaths, despite lower levels of risk (287,485 cases, risk = 24, case-fatality rate = 57, deaths = 164). Reducing the impact of indigenous foodborne disease is mainly dependent on controlling the contamination of chicken
    corecore