18 research outputs found

    Identification and phylogenetic comparison of p53 in two distinct mussel species (Mytilus)

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 140 (2005): 237-250, doi:10.1016/j.cca.2005.02.011.The extent to which humans and wildlife are exposed to anthropogenic challenges is an important focus of environmental research. Potential use of p53 gene family marker(s) for aquatic environmental effects monitoring is the long-term goal of this research. The p53 gene is a tumor suppressor gene that is fundamental in cell cycle control and apoptosis. It is mutated or differentially expressed in about 50% of all human cancers and p53 family members are differentially expressed in leukemic clams. Here, we report the identification and characterization of the p53 gene in two species of Mytilus, Mytilus edulis and Mytilus trossulus, using RT-PCR with degenerate and specific primers to conserved regions of the gene. The Mytilus p53 proteins are 99.8% identical and closely related to clam (Mya) p53. In particular, the 3′ untranslated regions were examined to gain understanding of potential post-transcriptional regulatory pathways of p53 expression. We found nuclear and cytoplasmic polyadenylation elements, adenylate/uridylate-rich elements, and a K-box motif previously identified in other, unrelated genes. We also identified a new motif in the p53 3′UTR which is highly conserved across vertebrate and invertebrate species. Differences between the p53 genes of the two Mytilus species may be part of genetic determinants underlying variation in leukemia prevalence and/or development, but this requires further investigation. In conclusion, the conserved regions in these p53 paralogues may represent potential control points in gene expression. This information provides a critical first step in the evaluation of p53 expression as a potential marker for environmental assessment.AFM was supported by the Greater Vancouver Regional District, BC, Canada, and RLC was supported by STAR grant R82935901 from the Environmental Protection Agency (USA)

    Tepotinib treatment in patients with MET exon 14-skipping non-small cell lung cancer: long-term follow-up of the VISION phase 2 nonrandomized clinical trial

    Get PDF
    IMPORTANCE MET inhibitors have recently demonstrated clinical activity in patients with MET exon 14 (METex14)-skipping non-small cell lung cancer (NSCLC); however, data with longer follow-up and in larger populations are needed to further optimize therapeutic approaches.OBJECTIVE To assess the long-term efficacy and safety of tepotinib, a potent and highly selective MET inhibitor, in patients with METex14-skipping NSCLC in the VISION study.DESIGN, SETTING, AND PARTICIPANTS The VISION phase 2 nonrandomized clinical trial was a multicohort, open-label, multicenter study that enrolled patients with METex14-skipping advanced/metastatic NSCLC (cohorts A and C) from September 2016 to May 2021. Cohort C (>18 months' follow-up) was an independent cohort, designed to confirm findings from cohort A (>35 months' follow-up). Data cutoff was November 20, 2022.INTERVENTION Patients received tepotinib, 500mg (450mg active moiety), once daily.MAIN OUTCOMES AND MEASURES The primary end point was objective response by independent review committee (RECIST v1.1). Secondary end points included duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety.RESULTS Cohorts A and C included 313 patients (50.8% female, 33.9% Asian; median [range] age, 72 [41-94] years). The objective response rate (ORR) was 51.4%(95% CI, 45.8%-57.1%) with a median (m)DOR of 18.0 (95% CI, 12.4-46.4) months. In cohort C (n = 161), an ORR of 55.9%(95% CI, 47.9%-63.7%) with an mDOR of 20.8 (95% CI, 12.6-not estimable [NE]) months was reported across treatment lines, comparable to cohort A (n = 152). In treatment-naive patients (cohorts A and C; n = 164), ORR was 57.3%(95% CI, 49.4%-65.0%) and mDOR was 46.4 (95% CI, 13.8-NE) months. In previously treated patients (n = 149), ORR was 45.0% (95% CI, 36.8%-53.3%) and mDOR was 12.6 (95% CI, 9.5-18.5) months. Peripheral edema, the most common treatment-related adverse event, occurred in 210 patients (67.1%) (35 [11.2%] experienced grade >= 3 events).CONCLUSIONS AND RELEVANCE The findings from cohort C in this nonrandomized clinical trial supported the results from original cohort A. Overall, the long-term outcomes of VISION demonstrated robust and durable clinical activity following treatment with tepotinib, particularly in the treatment-naive setting, in the largest known clinical trial of patients with METex14-skipping NSCLC, supporting the global approvals of tepotinib and enabling clinicians to implement this therapeutic approach for such patients.Pathogenesis and treatment of chronic pulmonary disease

    Health Utility Analysis of Tepotinib in Patients With Non-Small Cell Lung Cancer Harboring MET Exon 14 Skipping.

    No full text
    OBJECTIVES: The VISION trial showed durable activity of tepotinib in MET exon 14 (METex14) skipping non-small cell lung cancer. We analyzed health state utilities using patient-reported outcomes from VISION. METHODS: 5-level version of EQ-5D (EQ-5D-5L) and European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 responses were collected at baseline, every 6 to 12 weeks during treatment, and at the end of treatment and safety follow-up. EQ-5D-5L and European Organisation for Research and Treatment of Cancer Quality of Life Utility Measure-Core 10 Dimensions (QLU-C10D) utilities were derived using United States, Canada, United Kingdom, and Taiwan value sets, where available. Utilities were analyzed with linear mixed models including covariates for progression or time-to-death (TTD). RESULTS: Utilities were derived for 273/291 patients (EQ-5D-5L, 1545 observations; QLU-C10D, 1546 observations). Mean (± SD) US EQ-5D-5L utilities increased after tepotinib initiation, from 0.687 ± 0.287 at baseline to 0.754 ± 0.250 before independently assessed progression, and decreased post progression (0.704 ± 0.288). US QLU-C10D utilities showed similar trends (0.705 ± 0.215, 0.753 ± 0.195, and 0.708 ± 0.209, respectively). Progression-based models demonstrated a statistically significant impact of progression on utilities and predicted higher utilities pre versus post progression. TTD-based models showed statistically significant associations of TTD with utilities and predicted declining utilities as TTD decreased. Prior treatment (yes/no) did not significantly predict utilities in progression- or TTD-based models. Utilities for Canada, United Kingdom, and Taiwan showed comparable trends. CONCLUSIONS: In this first analysis of health state utilities in patients with METex14 skipping non-small cell lung cancer, who received tepotinib, utilities were significantly associated with progression and TTD, but not prior treatment

    Peloruside- and laulimalide-resistant human ovarian carcinoma cells have βI-tubulin mutations and altered expression of βII- and βIII-tubulin isotypes

    No full text
    Peloruside A and laulimalide are potent microtubule-stabilizing natural products with a mechanism of action similar to that of paclitaxel. However, the binding site of peloruside A and laulimalide on tubulin remains poorly understood. Drug resistance in anticancer treatment is a serious problem. We developed peloruside A- and laulimalide-resistant cell lines by selecting 1A9 human ovarian carcinoma cells that were able to grow in the presence of one of these agents. The 1A9-laulimalide resistant cells (L4) were 39-fold resistant to the selecting agent and 39-fold cross-resistant to peloruside A, whereas the 1A9-peloruside A resistant cells (R1) were 6-fold resistant to the selecting agent while they remained sensitive to laulimalide. Neither cell line showed resistance to paclitaxel or other drugs that bind to the taxoid site on β-tubulin nor was there resistance to microtubule-destabilizing drugs. The resistant cells exhibited impaired peloruside A/laulimalide-induced tubulin polymerization and impaired mitotic arrest. Tubulin mutations were found in the βI-tubulin isotype, R306H or R306C for L4 and A296T for R1 cells. This is the first cell-based evidence to support a β-tubulin–binding site for peloruside A and laulimalide. To determine whether the different resistance phenotypes of the cells were attributable to any other tubulin alterations, the β-tubulin isotype composition of the cells was examined. Increased expression of βII- and βIII-tubulin was observed in L4 cells only. These results provide insight into how alterations in tubulin lead to unique resistance profiles for two drugs, peloruside A and laulimalide, that have a similar mode of action

    Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics

    No full text
    The tumor suppressor protein p53 localizes to microtubules (MT) and, in response to DNA damage, is transported to the nucleus via the MT minus-end-directed motor protein dynein. Dynein is also responsible for MT-mediated nuclear targeting of adenovirus type 2 (Ad2). Here we show that treatment with low concentrations of MT-targeting compounds (MTCs) that do not disrupt the MT network but are known to suppress MT dynamics enhanced p53 nuclear accumulation, and the activation of the p53-downstream target genes. p53 nuclear accumulation required binding of MTCs to MTs and enhanced the induction of p53-up-regulated modulator of apoptosis (PUMA) mRNA and apoptosis on challenging cells with the DNA-damaging drug adriamycin. Low concentrations of MTCs enhanced the rate of movement of fluorescent Ad2 to the nucleus and increased the nuclear targeting efficiency of Ad2. We propose that suppression of MT dynamics by low concentrations of MTCs enhances MT-dependent trafficking toward the minus ends of MTs and facilitates nuclear targeting
    corecore