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ABSTRACT 

The extent to which humans and wildlife are exposed to anthropogenic challenges is an 

important focus of environmental research. Potential use of p53 gene family marker(s) for aquatic 

environmental effects monitoring is the long-term goal of this research. The p53 gene is a tumor 

suppressor gene that is fundamental in cell cycle control and apoptosis. It is mutated or 

differentially expressed in about 50 % of all human cancers and p53 family members are 

differentially expressed in leukemic clams. Here we report the identification and characterization 

of the p53 gene in two species of Mytilus, Mytilus edulis and Mytilus trossulus, using RT-PCR 

with degenerate and specific primers to conserved regions of the gene. The Mytilus p53 proteins 

are 99.8 % identical and closely related to clam (Mya) p53. In particular, the 3’ untranslated 

regions were examined to gain understanding of potential post-transcriptional regulatory pathways 

of p53 expression. We found nuclear and cytoplasmic polyadenylation elements, 

adenylate/uridylate-rich elements, and a K-box motif previously identified in other, unrelated 

genes. We also identified a new motif in the p53 3’UTR which is highly conserved across 

vertebrate and invertebrate species. Differences between the p53 genes of the two Mytilus species 

may be part of genetic determinants underlying variation in leukemia prevalence and/or 

development, but this requires further investigation. In conclusion, the conserved regions in these 

p53 paralogues may represent potential control points in gene expression. This information 

provides a critical first step in the evaluation of p53 expression as a potential marker for 

environmental assessment. 

 

KEYWORDS: environmental effects monitoring, leukemia, mussel, Mytilus, p53 gene family, 

phylogenetic footprint analysis, toxicogenomics, 3’ untranslated region 
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INTRODUCTION 

Environmental effects monitoring often includes in-situ biological information provided by 

fish and benthic invertebrate species to assess the health status of their environment (Environment 

Canada, 2003). The marine bivalve mollusc, mussel Mytilus sp. is widely used by Mussel Watch 

Programs (O'Connor et al., 1995), for monitoring pulp and paper mill effluents (Salazar et al., 

1997; St-Jean et al., 2003) and more recently, in municipal effluents effects monitoring (St-Jean et 

al., in press). The sessile nature of this species facilitates the establishment of cause and effect 

relationships in time and space (Widdows et al., 1995) and minimizes the possible confounding 

factor associated with the use of migratory species and those using larger areas for foraging.   

One sublethal monitoring endpoint currently under investigation by our laboratories is 

haemic neoplasia (leukemia), an ultimately fatal condition well documented in clams and mussels. 

Leukemia is characterized by continuously dividing malignant cells in the haemolymph of 

shellfish and is thought to be caused by anthropogenic substances (pesticides, PCBs), abnormal 

temperatures, viral transmission (McGladdery et al., 2001) and/or genetic background and 

seasonality (Elston et al., 1992). Other authors (Krishnakumar et al., 1999) were unable to link 

chemical exposure to onset of haemic neoplasia. We and others have demonstrated that the p53 

gene and its family member, p73, are implicated in the onset of molluscan leukemia (Barker et al., 

1997; Kelley et al., 2001; Stephens et al., 2001). In the softshell clam Mya arenaria, mutations 

occur in the p53 transcript of leukemic versus normal haemocytes (Barker et al., 1997). In 

addition, transcription of the p53 gene family member p73 is up-regulated in leukemic haemocytes 

of adult M. arenaria (Kelley et al. 2001) and p53 family member protein expression is altered in 

the transition of normal haemocytes to leukemia cells (Stephens et al., 2001). In leukemic Mya 

arenaria haemocytes, p53 is located in the cytoplasm rather than in the nucleus as it is for normal 
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cells, indicating that p53 is functionally altered in leukemic haemocytes (Kelley et al., 2001). 

These observations suggested that p53 family genes and other genes regulating their expression in 

Mytilus spp. could be used as potential early-warning biomarkers for evaluation of anthropogenic 

impacts affecting DNA structure or function. As a start, the goal of the research presented here was 

to identify and characterize the p53 gene in two species of Mytilus, M. edulis and M. trossulus, 

both of which are currently used for bio-monitoring. 

The p53s, a well characterized family of transcription regulators, act to promote expression 

of genes controlling DNA editing and repair, apoptosis and carcinogenesis. The p53 tumor 

suppressor gene was first discovered as a suspected oncogene by three independent research 

groups in 1979 (DeLeo et al., 1979; Lane et al., 1979; Linzer et al., 1979). Many studies illustrate 

the importance of the p53 gene, as it is either mutated or inactivated in over 50% of human cancers 

(O’Brate and Giannakakou, 2003). p53 has been termed the “gatekeeper of the genome” as well as 

a “network hub”(Vogelstein et al., 2000) because of its central role in the molecular networks that 

decide the fate of cellular life and death. As a transcriptional activator, p53 is normally inactive or 

rapidly degraded, but becomes activated upon damage to DNA by radiation or chemical 

treatments, hypoxia, or activation of oncogenes. Thus, p53 prevents cells from passing on the 

wrong DNA message potentially turning these cells into malignant tumors.  

The first molluscan p53 to be identified originated from the squid Loligo forbesi (Ishioka et 

al., 1995) but the squid sequence is more similar to p63/73, close homologues of p53. Kelley et al. 

(2001) isolated p53 and p73 from the bivalve mollusc Mya arenaria and a partial sequence for a 

p53 is available for the oyster Crassostrea rhizophorae (Genbank Accession Number AY442309). 

Bhaskaran and co-workers (Bhaskaran et al., 1999) described p53 from various fish species and 

suggested the use of p53 to study mutagenesis in fish and genotoxins in the aquatic environment. 
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The p53 protein is comprised of several conserved regions. The N-terminal transactivation 

domain provides the generic transactivation function and the binding site for MDM2, the main 

regulator of p53 stability. A proline-rich region has complex roles as a protein-binding site and a 

specific regulator of apoptosis (Courtois et al., 2004, and references therein). The C-terminus 

includes several domains involved in oligomerization and regulation of the specific DNA-binding 

activity. It also possesses a non-specific DNA binding activity thought to be involved in 

nonspecific p53-mediated DNA repair and in DNA/RNA reannealing (Wolkowicz et al., 1997). 

The regulation of p53 function is tightly controlled through several mechanisms including p53 

transcription and translation, protein stability and post-translational modification, as well as p53 

location in the cell nucleus or cytoplasm (O'Brate et al., 2003, and references therein). Several 

authors have used various monoclonal and polyclonal antibodies raised against human and clam 

(Spisula, Mya) p53 family members to study the expression of the p53 family and to distinguish 

leukemic cells from normal cells (Kelley et al., 2001; Stephens et al., 2001; Jessen-Eller et al., 

2002; Cox et al., 2003).  

We isolated haemocytes from two species of bivalve mollusc, Mytilus spp. and used these 

as a source for identification of p53 homologues. Here we report the identification, phylogenetic 

characterization and footprint analysis of distinct p53 homologues from Mytilus edulis and 

trossulus. These two species, albeit similar morphologically, differ significantly at the 

physiological level, such as gamete incompatibility (Rawson et al., 2003), different growth 

patterns (Penny et al., 2002), temporal separation and duration of spawning in Atlantic mussels, 

and total egg production and size (Toro et al., 2002).  Work carried out on the Pacific coast (BC) 

by our research team on caged mussels has confirmed the reported differences in growth and 

reproductive cycles between the species in the Pacific region. While spawning in M. edulis is 
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observed to occur in April, spawning in M. trossulus at the same location (cage) is observed from 

late June to early August. Here we report distinct variability in the primary gene structure of the 

p53 paralogues from these two species, a difference, which may help understand species-specific 

susceptibilities to environmental challenges. 

Phylogenetic comparisons as well as footprint analyses of the Mytilus spp. p53 sequences 

revealed that unique and highly conserved sequence sites occur in the 3’ untranslated regions (3’ 

UTRs). Our previous reports suggest that the occurrence of cis-acting signaling sites in the 3’ 

UTRs of the p53 gene family members in clams may control gene expression (Cox et al., 2003). 

Further investigations are required to determine the potential role of these sites in post-

transcriptional signaling or regulation of gene expression. This work makes use of comparative 

data to identify potential regulatory mechanisms controlling p53 gene expression. This represents 

an important first step toward the use of p53 gene family expression as a marker for leukemia and 

a valid environmental assessment monitor. 

 

MATERIALS AND METHODS 

Organisms 

Certified M. edulis (imported from Prince Edward Island) were obtained from Island Scallops, 

Qualicum, British Columbia and deployed in cages in March 2003 at various locations in the 

Vancouver Harbour, BC. M. edulis for this study were collected in October 2003 from one of the 

cages. M. trossulus was collected in March 2004 at Jericho Beach, Vancouver Harbour, British 

Columbia. In a previous report, Jericho Beach (Locarno) mussels were found to be 98% M. 

trossulus based on shell morphometry measurements (Mallet, 2003). Mussels used for the isolation 
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of p53 were subsequently identified and confirmed by the same method by Mallet Research 

Services, NS (McDonald et al., 1991; Mallet et al., 1995). 

 

Total RNA extraction 

Haemolymph was withdrawn from the posterior adductor muscle area using a dry syringe with 

22½-gauge needle. A drop of haemolymph was deposited on a microscope slide and haemocytes 

were allowed to adhere to the glass surface for five minutes at room temperature. Samples were 

then examined for potential parasite and mantle fluid contamination by microbial source or by 

tissue such as gamete, and moribund individuals were discarded. Estimate of percentage of 

neoplastic versus normal haemocytes was determined using phase contrast microscopy 

(McGladdery et al., 2001). mRNA was extracted from haemocytes of an M. edulis animal in 

transitional phase (Farley et al., 1991) and an M. trossulus  animal in normal phase using the Trizol 

reagent and protocol (Invitrogen Life Technologies, Mississauga, ON). Haemolymph was 

centrifuged at 3000 rpm using a microfuge and carefully resuspended in 0.5 ml chilled Trizol. The 

suspension was snap-frozen in a dry-ice/ethanol bath and stored at –80oC until further extraction. 

 

RT-PCR 

First strand cDNA synthesis was carried out on approximately 5 μg of total RNA extract with 

oligo-dT primers following the guidelines for PowerScriptTM Reverse Transcriptase (BD 

Biosciences Clontech, Mississauga, ON). Initial sequences were obtained for M. edulis by 

degenerate PCR using primer design that was based on Mya p53 protein DNA binding region 

(forward primer DegF2, reverse primer DegR2K, Table 1, kindly provided by Charles Walker), 

This resulted in the amplification of an initial 320 bp product which was further extended to the 5’ 
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and 3’ region by RACE PCR (BD Biosciences Clontech). Final full length clones for both species 

for the coding region were obtained with forward primer pMe-28F and reverse primer pMe1323R 

(Table 1), and for the 3’ untranslated region (3’UTR) by 3’RACE PCR with forward primer 

3’RACE829. Step-down PCR cycling conditions for all reactions were as follows: Initial melting 

at 95 oC for 1 min, 5 cycles of 94 oC for 30 s, 68 oC for 45 s, 72 oC for 3 min; 5 cycles of 94 oC for 

30 s, 66 oC for 45 s, 72 oC for 3 min; and so on to 5 cycles of 94 oC for 30 s, 62 oC for 45 s, 72 oC 

for 3 min; and finally 20 cycles of 94 oC for 30 s, 60 oC for 45 s, 72 oC for 3 min; followed by a 

final extension at 72 oC for 10 min. Clones were obtained by TA cloning into plasmid vector 

pCR2.1 and transformation of E.coli INVαF’ or TOP10F’ (Invitrogen Life Technologies). PCR 

products for the coding regions were cloned directly, while PCR products from the 3’RACE PCR 

were gel-purified from 0.7 – 1.0 % agarose TAE gels using the Roche High Pure PCR Product 

Purification kit (Roche Applied Science, Laval, QC) or the QiaQuick Gel Extraction kit (Qiagen 

Inc., Mississauga, ON) using manufacturers instructions. Plasmids with the correct length insert 

based on PCR with universal forward and reverse M13 primers and gel electrophoresis were then 

submitted for sequencing to the Nucleic Acid and Protein Sequencing facility, University of 

British Columbia. All clones were sequenced in both directions using the universal M13 primers. 

The number of clones sequenced for the final sequences were as follows: Three clones each for M. 

edulis and M. trossulus coding region, 10 clones for M. edulis 3’UTR, and one clone for M. 

trossulus 3’UTR.  

 

Amino acid sequence analysis 

All Mytilus sequences were submitted to Discontiguous Mega BLAST searches. We performed 

pairwise amino acid alignment of the deduced Mytilus p53 proteins with selected species using 
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AlignX (residue substitution matrix Blosum) to illustrate conserved protein domains. Gap opening 

penalty was set to 10; gap extension penalty at 0.05; gap separation penalty at 8. The alignment 

was edited in order to match highly conserved regions of the protein. A second pairwise multiple 

alignment with 32 other known p53 proteins was performed using Clustal X 1.83 (residue 

substitution matrix Gonnet) (Jeanmougin et al., 1998). The species and accession numbers are 

listed in Table 2. Gap opening penalty was set to 10; gap extension penalty at 0.1. The 

phylogenetic tree was produced in Clustal X, bootstrapped 200 times and displayed using 

TreeView (Page, 1996). Protein sequence identities were obtained from Clustal X alignment. 

 

Nucleic acid sequence analyses 

3’UTR sequences were submitted to UTRdb (Pesole et al., 2002) for analysis. 3’UTR sequences 

were aligned in ClustalX 1.83 and known regulatory elements were edited by hand. We also 

submitted a wide range of p53 3’UTRs to a phylogenetic footprint analysis using the FootPrinter 

2.1 Web server available at http://bio.cs.washington.edu/software.html. Parameters were set to 

default, except for motif size and maximum number of mutations, which were set according to the 

diversity of the species examined. For instance, for a broad diversity search we allowed for two 

mutations in a small motif of 6 to 10, while for a narrow diversity search we allowed no mutation 

and a longer motif size of 8 to 10. 
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RESULTS AND DISCUSSION 

 

Identification and characterization of Mytilus p53 cDNA 

The nucleic acid sequence of the cDNA for p53 was determined from two different mussel 

species, Mytilus edulis and Mytilus trossulus, and deposited in Genbank as AY579472 and 

AY611471, respectively. The total length of the cDNAs are 2288 nucleotides (nt) for both species, 

with an open reading frame (ORF) of 1302 nt, predicting a protein of 434 amino acids in length 

with a calculated molecular mass of 50 kDa, based on an average amino acid weight of 115 Da. 

This is within the range of previously reported p53 proteins. The nucleic acid sequences of the 

ORFs of M. edulis and M. trossulus are 96.5 % identical. However, predicted amino acid (aa) 

sequences for the two species are 99.8 % identical, indicating slightly different codon usage by the 

two species.  

 

Comparative analysis of p53 amino acid homologues 

We performed a comparative analysis between the two Mytilus p53 sequences and 

representatives of other major lineages: Mya arenaria, a representative for bivalve molluscs and 

likely a close relative of Mytilus, and Drosophila melanogaster a second representative for 

invertebrates, and four species of vertebrates, Xenopus laevis, two fish, Danio rerio and Barbus 

barbus, and one well-characterized mammalian representative, Homo sapiens (Table 2 and Figure 

1). 

Overall amino acid sequence identities between M. edulis p53 and the other aligned 

species, based on ClustalX identity tables, were as follows: M. arenaria Map53, 69 %; D. 

melanogaster Dmp53, 18 %; X. laevis Xlp53, 36 %; D. rerio Drp53, 38 %; B. barbus Bbp53, 38 
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%; and H. sapiens Hsp53, 31 %. Drosophila p53 has the least identity with Mytilus p53. As 

predicted, Mya p53 is the closest known relative to Mytilus p53. However, no N-terminal extension 

was detected in Mytilus when compared to Mya. In M. arenaria, a N-terminal extension was 

detected 8 aa distance upstream from the conventional start site which leads to a potential second 

start site for protein translation (Kelley et al., 2001).  

 

Mytilus p53 DNA Binding Domains 

Mytilus p53s have five DNA binding domains (DBDs, including the transcriptional 

activation domain, TAD), which are also found in Mya and other species. DBD II to V are located 

between amino acid residues 150 and 319 in both Mytilidae. These domains are highly conserved 

between species. Overall predicted protein identities of these four DBDs of Mytilus p53 are 88% 

when compared to Mya p53 but only 63% when compared to Homo p53. The transcriptional 

activation domain (TAD) provides the binding site for proteins that regulate p53 expression, DNA 

editing and repair, and apoptosis. The TAD is highly conserved across species (except D. 

melanogaster). The Mep53 TAD is 100% identical with Map53 and 75% identical with human 

p53. Negative feedback regulation of p53 activity is driven by a protein called MDM2, and 

positive regulation of p53-dependent tumor suppression is driven by the transcriptional co-

activator p300 (Shimizu et al., 2003, and papers therein). MDM2 functions as an ubiquitin ligase in 

the nucleus and, upon binding to p53 TAD, destines p53 for export to the cytoplasm and 

subsequent degradation. It is involved in an autoregulatory feedback loop that maintains p53 at 

basal level in healthy non-stressed cells. Defects in the pathways of MDM2 regulation of p53 are 

common in tumors that retain wildtype p53 (Vousden et al., 2002). The crucial MDM2 contact 

sites in human p53 are F19, W23 and L26, (shown in Figure 1 with # signs) which are also found 
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in Mep53 and Mtp53. Key p300 contact sites in human p53 are overlapping with the MDM2 

contact sites and are less conserved between species. Only three out of the six identified p300 

binding sites are conserved between human and Mytilus p53. Different kinases, such as ATM 

(ataxia telangiectasia mutated) or CHK2 (checkpoint kinase 2) can modify p53 at specific amino 

acids within the TAD region. Ser15, Thr18 and Ser20 have been identified as important 

phosphorylation sites (Shimizu et al., 2003, and papers therein). As shown in Figure 1 (with P) 

Ser15 and Thr18 are highly conserved between species, including Mep53 and Mtp53, while the 

residue at position 20 is less conserved (fish, Mya and Mytilus display a glutamate at this position). 

It has been found that a number of human tumors are associated with cytoplasmic localization of 

p53. As mentioned above, MDM2 regulates p53 activity by ubiquitination, followed by nuclear 

export and degradation. MDM2 overexpression was frequently found in advanced leukemic cells 

of human patients which have a p53-null phenotype due to rapid p53 degradation (Konikova et al., 

2003), but also in relation with low p53 levels or conformational mutants of p53 as measured with 

antibody PAb240. Similarly, leukemic clam haemocytes show localization of Map53 and Map73 

in the cytoplasm and not in the nucleus (Kelley et al., 2001). Since these MDM2 binding sites are 

also conserved in Mytilus this particular mechanism of leukemia may also be conserved in this 

species.   

The region between the TAD and DBD II is the most divergent region in p53 and contains 

a number of proline residues. It appears that the molluscs (including Loligo forbesi p53, sequence 

not shown) have a much longer region just before the proline-rich region than other organisms 

(Figure 1), the function of which is not known. The proline-rich region of the mussel p53 contains 

two PXXP motifs at positions 116 and 128. This is very similar to Map53, which also has only two 

PXXP motifs, while human p53 contains three such motifs and additional proline residues. These 
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motifs are entirely absent from Drosophila and Xenopus p53, and are present at non-homologous 

sequence positions in other organisms. This proline-rich region is involved in apoptosis and may 

bind SH3-containing kinases involved in signal transduction (Kelley et al., 2001). This region also 

contains the only amino acid position which is different between the two mussel species: Ser86 

and Thr86 for M. edulis and M. trossulus, respectively. It is unlikely that this variation will have an 

effect on p53 function and regulation as it is located in a less-conserved region of the protein. 

Mussel p53 DBD II is 92% identical with Mya p53, but only 69% identical with human 

p53. DBD III shares 92 % identity with Mya and 81% identity with human p53. It contains two 

zinc binding sites which are fully conserved in all presented species. Similarly, two mutational hot-

spots (Val 173 and Cys 175 in Hsp53) are 100% conserved (May et al., 1999). Mep53 DBD IV is 

91% identical with Mya and 73 % identical with human p53. Mutational hot-spots are based on the 

frequency of point mutations found in human cancers. Point mutations with the highest frequencies 

have been termed hot-spots. The three mutational hotspots contained in DBD IV are highly 

conserved, with the exception of Drosophila p53. Zinc and DNA binding sites are 100% conserved 

between all presented species. Known residues for mutational hot-spots and DNA binding sites for 

neighboring DBD V are slightly less conserved between species. Overall identities for this region 

between Mytilus and Mya are 100 %, and between Mytilus and Homo 93 %. Analysis of 

distribution of mutations in human p53 shows that they are essentially clustered in the central 

region of the protein, and in particular within the four DNA binding domains (Soussi et al., 1996). 

Conservation of human mutational hot-spots in other species not only points to the essential nature 

of these amino acids for p53 function but also raises the possibility that these residues may be 

involved in cancers in other species. 



   14 

Mytilus p53 has a tripartite nuclear localization signal (NLS I, II and III) which is similar to 

human p53. In our alignment, Mya p53 also shows a tripartite NLS, although Kelley et al. (Kelley 

et al., 2001) indicated that Mya may only have two NLS. All NLS are rich in lysine residues. It is 

known that lysine K320 in Hsp53 NLS I, which is highly conserved between species, is acetylated 

to enhance p53 stability and p53- specific DNA binding with p53-regulated proteins (Liu et al., 

2000). Nuclear import of p53 is enabled by its NLS while nuclear export is enabled by its nuclear 

export signal (NES) which is located within the tetramerization domain (see below). In human, 

when DNA is damaged, p53 gets imported into the nucleus via its NLS and undergoes 

tetramerization, binds and activates DNA-damage response genes (O'Brate et al., 2003) (and 

papers therein). The tetramer state of p53 masks the nuclear export signal thereby preventing 

export to the cytoplasm. As mentioned above, p53 functions as a tetrameric protein. The 

tetramerization domain is 59 % identical with Mya p53 and 53 % identical with human p53 

tetramerization domain. Glycine 334 (in humans) is crucial for stability of p53 and conserved 

throughout all presented lineages. Leucines 348 and 350 (in humans) are crucial for NES. They are 

conserved in Mytilus, but interestingly not in Mya where the second leucine is substituted by 

isoleucine. Positions 341 and 344 (in humans) are critical for oligomerization and are conserved 

non-polar residues, mostly leucines. The ability to form tetramers allows p53 to behave in a 

dominant-negative fashion (Hofseth et al., 2004). Our identification of highly conserved regions 

within the functional domain of Mytilus p53 suggests that its overall function is conserved. These 

observations, taken with previous data (Kelley et al., 2001) implicating p53 family members in the 

onset of leukemia further suggest the utility of Mytilus p53 gene expression as an indicator for 

early onset leukemia and an important molecular target of genotoxins in the environment.  

 



   15 

Phylogenetic analysis 

The recent finding of a p53 homologue in Entamoeba histolytica (Mendosa et al., 2003) 

suggests that the p53 gene family is of ancient origin. We performed a phylogenetic analysis of 

many to-date available p53 amino acid sequences to a) confirm Mytilus p53 sequence relationships 

with other invertebrates, and b) clarify the phylogenetic relationship of the D. melanogaster p53 

homologue in relation to other invertebrates and vertebrates (Figure 2, Table 2). We set entamoeba 

Ehp53 as the outgroup as it is likely the most distantly related p53 known thus far. We found that 

Mytilus p53s cluster with other known mollusc invertebrate p53s, especially with the other known 

bivalve p53s, as would be expected. The family Mytilidae dates back to the Jurassic or perhaps 

even Devonian times (Soot-Ryen, 1969) (ca. 400 million years ago).  The tree topology supports 

the now accepted view that the molluscan lineage is not part of a common lineage with the 

annelids as was suspected previously (Wilmer, 1990). It is remarkable that p53 of D. melanogaster 

(Dmp53) is monophyletic and does not cluster with the other insect p53, and suggests that p53 of 

D. melanogaster may have undergone more recent mutations, for instance loss of the MDM2 

binding region. Because of its role as guardian of the genome as well as its recent identification in 

entamoeba it may be possible to use p53 and its relatives p63 and p73 (Yang et al., 2002) as central 

regulatory genes for phylogenetic studies as more sequences become available.  

 

Analysis of the 3’ untranslated region of Mytilus p53 cDNA 

Untranslated regions at the 3’ end of the mRNA contain signals for mRNA translation, 

polyadenylation, stability and subcellular localization, and play therefore an important role in gene 

regulation and expression at the post-transcriptional level (Pesole et al., 2002). We obtained the 

3’UTR by 3’RACE PCR starting at the conserved DBD V. We sequenced 10 clones in M. edulis 
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and subsequently one clone in M. trossulus. The total length, starting after the stop codon TGA and 

ending at the start of the polyA tail, is 917 nt in M. edulis, and 874 nt in M. trossulus, and fall well 

within the range of 3’UTR lengths (maximum 9142 nt, minimum 15 nt, average 444.5 nt) reported 

for invertebrate species (Pesole et al., 2001) (Figure 3). 

Mya p53 3’UTR contains 2027 nt and is therefore comparatively longer than the Mytilus 

p53 3’UTRs. The sequences vary widely between the mussels and the clam 3’UTRs, probably 

because these regions are under less evolutionary constrains than the coding regions (Conne et al., 

2000; Grzybowska et al., 2001). Sequence alignment of the three consensus sequences (Mep53 v1, 

v2, v3) obtained by manual alignment from 10 M. edulis clones revealed various deletions in the 

3’UTR of p53 for this species (Figure 3). One clone had a deletion of 114 nt starting at position 40 

(termed version 3), while three other clones had a deletion of 42 nt starting at position 551 (termed 

version 2) of the full-length 3’UTR. Six of the ten clones were full-length (termed version 1). M. 

trossulus p53 3’UTR was most similar to the full-length version of the M. edulis p53 3’UTR (v1) 

with a minor deletion of 7nt at 128, and a deletion of 31 nt at position 817. Regions bordering 

these deletions were not found to be reverse complement to each other and it is therefore unlikely 

that these deletions are artifacts of polymerase slippage. It is currently unknown whether these 

deleted (or inserted) regions affect expression of the transcript or function of the protein.  

While post-translational regulation and cellular localization of p53 has received 

considerable attention (for a review see O'Brate et al., 2003), post-transcriptional regulation of p53 

activity has perhaps been undervalued in recent years. We identified the following regulatory 

regions based on current literature in bivalve p53 3’UTR: 

1) Tandem nuclear polyadenylation sites “AATAAA” are located 20 nt upstream of the 

polyA tail in M. edulis. A single polyadenylation site is located 14 nt upstream of the polyA tail in 
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M. trossulus. This sequence is required for proper poly(A) tail addition and mRNA stabilization in 

the nucleus and binds to a complex of four polypeptides, the polyadenylation specificity factor 

(CPSF) (Verrotti et al., 1996). mRNAs initially receive their poly(A) tails of approximately 250 

nucleotides in length in the nucleus of the cells. Upon entering the cytoplasm, poly(A) is removed 

in most cells. 

2) We located three cytoplasmic polyadenylation elements (CPEs) in a region starting at 

482 nt after the stop codon (Figure 3). CPEs are AU-rich regions and are generally defined as “T4-

6AT” (Pesole et al., 1999, see also UTRsite at http://bighost.ba.itb.cnr.it/srs6bin/wgetz?-

e+[UTRSITE-ID:*]). Located near the nuclear polyadenylation element, the CPEs are 

evolutionarily conserved sites, known to regulate translational activation by elongation of the 

poly(A) tail in the cytoplasm of the cell. Generally, poly(A) elongation confers translational 

activation while deadenylation promotes translational silencing (Richter, 1999). CPEs have mostly 

been studied in mouse, Xenopus and Drosophila oocyte maturation and early development. 

Detailed mutagenesis experiments established that minimal perturbations of Xenopus CPEs can 

abolish their function (Verrotti et al., 1996, and references therein). Sequence comparison across 

species is difficult because of the AT-richness of the region and because of a “substantial context 

and position effect on CPE function” (Verrotti et al., 1996), which is illustrated by the alignment of 

the Mytilus and Mya 3’UTRs (Figure 3). Whether the deletion of regions of the Mep53_v2 and the 

Mtp53 3’UTR located within the CPE region has an effect on cytoplasmic polyadenylation and 

translational activation is entirely speculative at this point. In Xenopus, CPEs are recognized by 

CPE binding proteins which, together with the CPSF, may form a core cytoplasmic 

polyadenylation apparatus that is conserved across species (Verrotti et al., 1996). Recent evidence 

suggests that cytoplasmic polyadenylation not only plays a role in mRNA activation in early 
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development, but also in synaptic memory (or plasticity) after stimulation in the brain (Richter, 

2001) and in cell cycle control upon recognition of DNA damage in yeasts (Read et al., 2002). 

CPE-dependent polyadenylation has also been demonstrated in human MCF7 breast cancer cell 

line, in a CPE-containing 3’UTR fragment of cyclin B mRNA (Groisman et al., 2002). 

3) The 3’UTR of p53 also contains six adenylate/uridylate-rich elements (AREs) which are 

usually defined by the pentamer AUUUA or the nonamer UUAUUUA(U/A)(U/A), and have 

previously been found in labile mRNAs for regulatory proteins such as proto-oncoproteins, growth 

factors and their receptors, inflammatory mediators and cytokines (Grzybowska et al., 2001). The 

AREs primary function is to target mRNAs for selective degradation. However, ARE mediated 

decay is itself regulated: under stress conditions, cell stimulation, or during oncogenic 

transformation ARE-containing mRNAs are stabilized. Their regulatory functions are expressed 

through the specific binding of proteins which can modify transcript stability. The mussel 

sequences contain five consecutive ARE sequences in comparison to the clam p53 sequence which 

contains only one (Figure 3). As already concluded by Read and Norbury (Read et al., 2002), the 

further characterization of cytoplasmic polyadenylation implicate this mechanism of translational 

control in the regulation of increasingly diverse cellular processes, but seemingly most often in 

cellular responses to stress, DNA damage, replication block, and normal cell cycle events. It may 

therefore be of no surprize to find CPEs and AREs in p53 as well as in its relatives, p63/73 (Cox et 

al., 2003). One of the main advantages of translational control is that it enables rapid changes in 

gene expression without requiring gene transcription or mRNA transport (Read et al., 2002).  

In an attempt to identify novel signaling elements in the 3’UTR of Mytilus p53, we 

submitted the sequences to the UTRscan program at http://bighost.area.ba.itb.cnr.it/BIG/UTRScan/ 

(Pesole et al., 1999) and identified a K-box motif as indicated in Figure 3. The K-Box motif 

http://bighost.area.ba.itb.cnr.it/BIG/UTRScan/
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(ATGTGATA) occurs 179 nt upstream of the poly-A tail in all Mytilus p53 and potentially in Mya 

p53. The more conserved “TGTGAT” motif occurs in Mya p53, 380 nt upstream of the poly A tail 

and may be a second K-box in this species. We also searched other aligned species for the 

conserved “TGTGAT” K-box motif and found it in Danio rerio p53 3’UTR, at 327 nt upstream 

from the poly-A tail. We did not find it in Drosophila p53 or in Loligo p53. This is the first 

identification of the K-box motif in any species as a potential site of 3’UTR transcriptional 

regulation in the p53 gene family. The K-box was originally identified in Drosophila Notch 

signaling proteins E(spl)-C (Lai et al., 1998) where it is loosely associated with a CAAC motif, not 

present in Mytilus, Mya and Danio p53 3’UTR. Lai and co-workers (Lai et al., 1998) found that the 

presence of the K-box resulted in a decreased level of mRNA as well as protein in developing 

Drosophila embryos. Mutation or deletion of the K-box motif resulted in over-expression of the 

reporter construct in all developing tissues. These K-box motifs may be recognized by micro-

RNAs (Lai, 2004), which mediate translational inhibition in Drosophila and C. elegans (Lai et al., 

2004, and references therein). We hypothesize that the K-box motif found in Mytilus and Mya p53 

3’UTR may play a role in regulation of p53 levels in addition to, or in concert with other 3’UTR 

translational elements as well as the MDM2 positive regulatory feedback loop. Phylogenetic 

conservation of K-boxes in the p53 gene family remains to be investigated.  

The p53 3’UTRs of the two Mytilus species examined are 93 % identical based mostly on 

point mutations and two regions missing from M. trossulus when compared to the full-length M. 

edulis 3’UTR. The point mutation at position 857 eliminates one of the two nuclear 

polyadenylation sites. However, this may be due to polymerase error and needs to be confirmed in 

subsequent sequences. The deleted regions do not affect any of the conserved functional regions, 

but would affect spacing between the regions.  
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Whether any of the observed differences result in differential expression of the p53 protein 

in the two species is unclear, and may also be due to other factors up- and downstream of p53 

transcription/translation within the regulatory pathways. A widely used antibody against p53 

protein (Ab-1, clone Pab421) detects no 53 kDa protein in Mytilus edulis normal and leukemic 

haemocytes, but does cross-react with a 120-kDa variant (St-Jean et al., in press). p53 may be 

transcribed into pre-mRNA and spliced into mature mRNA at levels high enough to be detected by 

RT-PCR, but is either not translated into protein or the protein may be degraded or modified at 

such a rate that it cannot be detected by Western blotting. Interestingly, it was shown that there is 

an inverse relationship between mRNA levels and protein levels of a p120 (now believed to be a 

post-translationally modified p63/73 homologue) during embryonic development of the surf clam 

S. solidissima (Jessen-Eller et al., 2002). Also, Conne and co-workers (Conne et al., 2000) found 

that p53 protein is often undetectable in acute myelogenous leukemia (AML) cells in human. This 

raises the possibility that p53 half-life is altered in AML cells and/or that p53 gene expression is 

translationally regulated. The identification of translational regulatory elements in the 3’UTR of 

p53 corroborate this hypothesis, but would require further detailed investigations to confirm 

cellular localization, stability and translation of p53 mRNA. 

 

Phylogenetic Footprint Analysis of the 3’UTR 

If the p53 family is indeed of ancient origin it is possible that functional elements have 

been conserved in the untranslated regions. Selective pressure would cause functional elements to 

evolve at a slower rate than that of nonfunctional sequences. Phylogenetic footprinting deduces 

novel regulatory elements by considering orthologous regions of a single gene from several species 

(Blanchette et al., 2002). We ran a series of phylogenetic footprint analyses using FootPrinter 2.1 
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(Blanchette et al., 2003) for a very diverse group of p53 sequences to potentially identify novel 

regulatory elements conserved across species. The analysis included p53 3’UTR sequences from 

Mytilus spp., clam M. arenaria, flour beetle T. castaneum, puffer fish T. miurus, trout O. mykiss, 

chicken G. gallus, frog X. laevis, and H. sapiens (see Table 2 for accession numbers). The 3’UTR 

for Cep-1 and Ehp53 were not included. We searched for conserved elements of lengths 6 to 10 in 

consecutive runs with a parsimony score (= number of mutations) of 2. Only the smallest motif 

length, 6, returned two conserved motifs across this wide range of species. Figure 4A gives the 

location and sequence of the two motifs: tg(t/c)(g/t)tt (green) and tattta (red). The first motif may 

be a new previously unidentified regulatory element in the 3’UTR of p53, and is also indicated as 

green background in Figure 3. Of all the sequences analyzed, only T. miurus has a duplication of 

this motif. The second motif identified by FootPrinter overlaps with the CPE/ARE region 

identified in Figure 3 for the Mytilus sp. (484, Mep53_v1). FootPrinter identified a similar region 

in Map53 at position 386 which was not previously identified. The ClustalX alignment  (Figure 3) 

failed to align the CPEs found in Mytilus with potential CPEs in M. arenaria, likely due to low 

sequence conservation and AT-richness of the region. We used the FootPrinter program on the 

Mytilidae and M. arenaria to look for highly conserved potential regulatory elements within the 

mollusc bivalve family. For this, we increased the motif length to 9 and allowed no mutations, 

because the evolutionary distance is short between Mytilus and Mya. Two tandem motifs were 

identified (Figure 4B): Motif #1 (pink) is an unidentified conserved motif adjacent to the highly 

conserved motif identified in the previous footprint analysis (and is also indicated with a pink 

background in Figure 3), motif #2 (green) coincides with the CPE region identified for Mytilus sp. 

in Figure 3 (722, Mep53_v1), motif #3 coincides with the highly conserved motif identified in the 

previous footprint analysis (and indicated with a green background in Figure 3), and motif #4 
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(blue) is an unidentified conserved motif. Motif #2 can be interpreted as a potential CPE in M. 

arenaria at location 833 (green frame in Figure 3). Our analysis found previously known 

regulatory elements as well as highly conserved motifs with unknown function. We found that the 

FootPrinter results are highly sensitive to the input criteria such as species selection, motif length 

and parsimony score. During the analysis we chose a low parsimony score to ensure that the motifs 

reported were well conserved. Therefore, we may have missed potential functional motifs with a 

higher degree of variability. 

The data presented here contribute to a rapidly emerging story that describes potential 

transcriptional control of expression in the p53 gene family. Further analysis of phylogenetically 

diverse sequences will contribute to this model. Variability in the 3’UTR of molluscan p53 family 

members was previously identified by Kelley and co-workers (Kelley et al., 2001) who found that 

unlike in mammals, the molluscan p73 and p53 have almost complete identity of the core 

sequences and suggest that the p73 is a 3’ gene variant of the p53 gene, and that a divergence in 

gene function occurred early in evolution. In addition, Cox et al. (Cox et al., 2003) found that two 

unique polyadenylation site variants may control expression of the p73 gene in another molluscan 

species, Spisula solidissima. Taken together, these observations and the data presented here serve 

to demonstrate the complexities of p53 gene family regulation and the insights gained by analysis 

of non-mammalian species. 

 

CONCLUSIONS 

In order for both species of Mytilus, M. edulis and M. trossulus, to be used for coastal or marine 

environmental effects monitoring, their responses to similar challenges must be quantified. In 

addition, differences in the natural prevalence, cyclical nature, and progression of haemic 
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neoplasia between the two species must be determined to enable differentiation between natural 

phenomena and anthropogenic effects. We identified and compared the p53 sequences in both 

species as a first step in the development of a rapid and repeatable screening tool for haemic 

neoplasia in Mytilidae. The p53 cDNA sequences, designated Mep53 and Mtp53, were identified 

in Mytilus edulis and Mytilus trossulus, respectively, and found to be 96.5 % similar to each other. 

The coding regions of the p53 cDNA contain highly conserved regions similar to most identified 

p53. Putative p53 proteins of the two Mytilus species are 99.8 % similar to each other. The 3’ non-

coding region contains a number of known regulatory sequences: adenylate/uridylate-rich 

elements, cytoplasmic polyadenylation sites, nuclear polyadenylation sites and a K-box motif, 

which have not been identified previously in a p53. Further studies are required to ascertain 

whether p53 is differentially expressed or mutated in leukemic haemocytes of Mytilus. 
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TABLES AND FIGURES  

 

Table 1:  

Primers used in the identification of p53 in Mytilus sp. Capital letters indicate degenerate residues: 

I, inosine; R, A/G; M, A/C; Y, C/T; K, G/T; N, A/T/G/C; D, A/G/T. 

 

Name Sequence 5’ -> 3’ 

Deg F2 gtIaaRMgItgYccIaaYcaK 

Deg R2K NggRcaNgcRcaDatNcKNacYtc 

pMe-28F tggaaagttcactcatcatcacc 

pMe1323R atatatcctcaatgttcctgaacc 

3’RACE829 catgtgtaggaggaccaaacagaaggcc 
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Table 2:  

List of species, accession numbers, and abbreviations used for the phylogenetic analysis of p53 

proteins in Figure 2. 

 

Common name Scientific name Abbreviation Accession  # Phylogenetic taxa 

Entamoeba Entamoeba histolytica Ehp53 AJ489250 Eukaryota, Entamoeba 
Blue mussel Mytilus edulis Mep53 AY579472 Invertebrate, Mollusca 
Bay mussel Mytilus trossulus Mtp53 AY611471 Invertebrate, Mollusca 
Softshell clam Mya arenaria Map53 AF253323 Invertebrate, Mollusca 
Squid Loligo forbesi Lfp73 U43595 Invertebrate, Mollusca 
Fruit fly Drosophila melanogaster Dmp53 AF263722 Invertebrate, Arthropoda 
Potato beetle Leptinotarsa decemlineata Ldp53 BD250011 Invertebrate, Arthropoda 
Flour beetle Tribolium castaneum Tcp53 BD250012 Invertebrate, Arthropoda 
Nematode Caenorhabditis elegans Cep-1 AF440800 Invertebrate, Nematoda 
Swordtail Xiphophorus helleri Xhp53 AF043946 Vertebrate, Neoteleostei 
Medaka Oryzias latipes Olp53 U57306 Vertebrate, Neoteleostei 
Flounder Platichthys flesus Pfp53 Y08919 Vertebrate, Neoteleostei 
Congo puffer Tetraodon miurus Tmp53 AF071571 Vertebrate, Neoteleostei 
Barbel Barbus barbus Bbp53 AF071570 Vertebrate, Ostariophysi 
Zebrafish Danio rerio Drp53 AF365873 Vertebrate, Ostariophysi 
Channel catfish Ictalurus punctatus Ipp53 AF074967 Vertebrate, Ostariophysi 
Rainbow trout Oncorhynchus mykiss Omp53 M75145 Vertebrate, Ostariophysi 
Clawed frog Xenopus laevis Xlp53 X77546 Vertebrate, Amphibian 
Chicken  Gallus gallus Ggp53 NM_205264 Vertebrate, Aves 
Human Homo sapiens Hsp53 AB082923 Vertebrate, Mammal 
Dog Canis familiaris Cfp53 AB020761 Vertebrate, Mammal 
Cattle Bos taurus Btp53 NM_174201 Vertebrate, Mammal 
Vervet monkey Chlorocebus aethiops Cap53 X16384 Vertebrate, Mammal 
Chinese hamster Cricetulus griseus Cgp53 U50395 Vertebrate, Mammal 
Guinea pig Cavia porcellus Cpp53 AJ009673 Vertebrate, Mammal 
Cat Felis catus Fcp53 D26608 Vertebrate, Mammal 
Natal rat Mastomys natalensis Mnp53part U48617 Vertebrate, Mammal 
Sheep Ovis aries Oap53 X81705 Vertebrate, Mammal 
European rabbit Oryctolagus cuniculus Ocp53 X90592 Vertebrate, Mammal 
Rat Rattus norwegicus Rnp53 NM_030989 Vertebrate, Mammal 
Mouse Mus musculus Mmp53 X00741 Vertebrate, Mammal 
Pig Sus scrofa Ssp53 AF124298 Vertebrate, Mammal 
Beluga whale Delphinapterus leucas Dlp53 AF475081 Vertebrate, Mammal 
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Figure 1: 

Multiple pairwise alignment of amino acid sequences for p53 homologues from Mytilus edulis 

(Mep53), Mytilus trossulus (Mtp53), Mya arenaria (Map53), Drosophila melanogaster (Dmp53), 

Xenopus laevis (Xlp53), Danio rerio (Drp53), Barbus barbus (Bbp53), and Homo sapiens 

(Hsp53). Color coding: Black on white, non-homologous residues; green on white, weakly similar 

residues; blue on white, block of similar residues; black on gray, conserved residues; red on gray 

background, identical residues. Abbreviations: TAD, Transcriptional activation domain (or DNA 

binding domain I); DBD II-V, DNA binding domains II-V; NLS I and II, nuclear localization 

domain I and II; NES, nuclear export domain; PxxP, proline-rich domains in shellfish species; , 

putative conserved phosphorylation sites; #, key MDM2 binding sites; §, residues where Hsp53 

binds to DNA; *, Hsp53 mutational hot-spots; Z, residues involved in zinc binding. The open box 

indicates the single amino acid change between Mep53 and Mtp53. 

 

Figure 2: 

Phylogenetic relationship between p53 proteins of diverse species indicating separate lineages for 

mollusca and annelida. See table 2 for species list and abbreviations. The neighbor-joined 

consensus tree was based on a pairwise Clustal X alignment, boostrapped 200 times and rooted 

with entamoeba p53 as an outgroup. Numbers at the nodes indicate bootstrap values. The bottom 

scale measures genetic distances in substitutions per nucleotide. The clustering of p53s in 

phylogenetic groups (Mammals, Ostariophysi, Neoteleosti, Mollusca and Insecta) is indicated with 

brackets. 
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Figure 3: 

Clustal X alignment of the 3’UTR of the p53 gene of three variants of M. edulis, Mep53_v1, 

Mep53_v2 (AY735341), Mep53_v3 (AY735340), M. trossulus (Mtp53) and M. arenaria (Map53). 

Color coding: Red, identical residues; blue, similar residues; black, non-similar residues. 

Abbreviations: CPE, cytoplasmic polyadenylation signal; ARE, adenylate/uridylate-rich elements. 

Conserved known regulatory regions are indicated by open and closed boxes. 

 

Figure 4: 

Output for the phylogenetic footprint analysis. The graphic panel shows the phylogenetic tree 

relating the sequences. Each horizontal line is labeled with the name of the gene (see Table 2 for 

species identification) and represents the entire 3’UTR sequence. The colored bars above the lines 

indicate the position of discovered motifs. The bar colors correspond to the font colors in the table 

below. This table shows the exact sequences and positions of each motif. A, p53 3’UTRs from a 

diverse range of species. B, p53 3’UTRs from the bivalve species.  
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TAD

Mep53    (1) --------MSQASVSTTCTPSGPPMSQET--FEYLWNTLGEVTQEGGYTNITSKESIDYAFSEAEDETSI 
Mtp53    (1) --------MSQASVSTTCTPSGPPMSQET--FEYLWNTLGEVTQEGGYTNITSKESIDYAFSEAEDETSI 
Map53    (1) MSHEALHKMSQVAIHGTLP--NQPMSQET--FEYLWHTLEEVTDNVDYTHINTRE-LDYSYDDSEDGTSL 
Dmp53    (1) ------MYISQPMSWHKESTDSEDDSTEVDIKEDIPKTVEVSG------------------------SEL 
Xlp53    (1) --------ME-PSSETGMDP---PLSQET--FEDLWSLLP-D-------------------------PLQ 
Drp53    (1) -----------------MAQ---NDSQE---FAELWEKNLIIQ------------------------PPG 
Bbp53    (1) -----------------MAE-----SQE---FAELWERNLIST------------------------QEA 
Hsp53    (1) --------MEEPQSDPSVEP---PLSQET--FSDLWKLLPENNVLS-------------------PLPSQ 

DBD II

DBD III 

DBD V DBD IV

NLS I

domain 

Tetramerization

NLS II 

PxxP

PxxP

NLS III

Z  Z * *

Z  §*  *  *
    Z     §

* §* §§  §* § 

NES 

PxxPPxxPPxxP

 
 
Mep53   (61) SVEKYRITSNDS-ISDLLNPIIGQ-TTTASSMSPDSQTNIIGSSASSPYNDT-ITSPPPYSPHTSMQSPI 
Mtp53   (61) SVEKYRITSNDS-ISDLLNPIIGQ-TTSASSMSPDSQTNIIGSSASSPYNDT-ITSPPPYSPHTSMQSPI 
Map53   (66) QVEKFRINQHHTDVSDLLNPIIG--TTSSSSMSPDSQTNISGSTASSPYQEMALTSPPPYSPHTNLTSPI 
Dmp53   (41) TTEPMAFLQGLN------------------------SGNLMQFSQQSVLREMMLQDIQIQ---------A 
Xlp53   (31) TVTCRLDNLS-------------------------EFPDYPLAADMSVLQEGLMGNAVPT--------VT 
Drp53   (24) GGSCWDIINDE-------------------------E-YLPGSFDPNFFENVLEEQPQPS---T--LPPT 
Bbp53   (22) G-TCWELIND--------------------------E-YLPSSFDPNIFDNVLTEQPQPS---T--SPPT 
Hsp53   (39) AMDDLMLSPDDI------------EQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPS--WPLS 
 
 
Mep53  (128) PSVPSNTDY-PGDYGFTISFSQPSKETKSTTWTYSESLKKLYVRMATTCPIRFKCLR-QPPQGCVIRAMP 
Mtp53  (128) PSVPSNTDY-PGDYGFTISFSQPSKETKSTTWTYSESLKKLYVRMATTCPIRFKCLR-QPPQGCVIRAMP 
Map53  (134) PTVPSNTNY-PGDYGFEISFATPSKETKSTTWTYSDILKKLYVRMATTCPVRFKTLR-QPPPGCVIRSMP 
Dmp53   (78) NTLPKLENHNIGGYCFSMVLDEP---PKS-LWMYSIPLNKLYIRMNKAFNVDVQFKSKMPIQPLNLRVFL 
Xlp53   (68) SCAPSTDDY-AGKYGLQLDFQQ-NGTAKSVTCTYSPELNKLFCQLAKTCPLLVRVES-PPPRGSILRATA 
Drp53   (63) STVPETSDY-PGDHGFRLRFPQ-SGTAKSVTCTYSPDLNKLFCQLAKTCPVQMVVDV-APPQGSVVRATA 
Bbp53   (59) ASVPVATDY-PGEHGFKLGFPQ-SGTAKSVTCTYSSDLNKLFCQLAKTCPVQMVVNV-APPQGSVIRATA 
Hsp53   (95) SSVPSQKTY-QGSYGFRLGFLH-SGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDS-TPPPGTRVRAMA 
 
 
Mep53  (196) IFMKPEHVQEPVKRCPNHATSKEHNENHPAP-THLCRCEHKL-AKFVEDP----YTSRQSVLIPHEI--- 
Mtp53  (196) IFMKPEHVQEPVKRCPNHATSKEHNENHPAP-THLCRCEHKL-AKFVEDP----YTSRQSVLIPHEI--- 
Map53  (202) IFMKPEHVQEAVKRCPNHATSKEFNENHPAP-NHLVRCEHKV-SKYVEDP----YTNRQSVLIPQET--- 
Dmp53  (144) CFSND--VSAPVVRCQNHLSVEPLTANNAKMRESLLRSENPN-SVYCGNAQGKGISERFSVVVPLNMSRS 
Xlp53  (135) VYKKSEHVAEVVKRCPHHERSVEP-GEDAAPPSHLMRVEGNLQAYYMEDV----NSGRHSVCVPYEG--- 
Drp53  (130) IYKKSEHVAEVVRRCPHHERTPD--GDNLAPAGHLIRVEGNQRANYREDN----ITLRHSVFVPYEA--- 
Bbp53  (126) IYKKSEHVAEVVRRCPHHERTPD--GDGLAPAAHLIRVEGNSRALYREDD----VNSRHSVVVPYEV--- 
Hsp53  (162) IYKQSQHMTEVVRRCPHHERCSD--SDGLAPPQHLIRVEGNLRVEYLDDR----NTFRHSVVVPYEP--- 
 
 
Mep53  (257) -PQAGSEWVTNLFQFMCLGSCVGGPNRRPIQIVLTLE-KDNQVLGRRAVEVRICACPGRDRKADEK--AA 
Mtp53  (257) -PQAGSEWVTNLFQFMCLGSCVGGPNRRPIQIVLTLE-KDNQVLGRRAVEVRICACPGRDRKADEK--AA 
Map53  (263) -PQAGSEWVTNLFQFMCLGSCVGGPNRRPLQIVFTLE-KDNQVLGRRCVEVRICACPGRDRKADER--GS 
Dmp53  (211) VTRSGLTRQTLAFKFVCQNSCIG---RKETSLVFCLEKACGDIVGQHVIHVKICTCPKRDRIQDERQLNS 
Xlp53  (197) -PQVGTECTTVLYNYMCNSSCMGGMNRRPILTIITLETPQGLLLGRRCFEVRVCACPGRDRRTEED--NY 
Drp53  (191) -PQLGAEWTTVLLNYMCNSSCMGGMNRRPILTIITLETQEGQLLGRRSFEVRVCACPGRDRKTEES--NF 
Bbp53  (187) -PQLGSEFTTVLYNFMCNSSCMGGMNRRPILTIISLETHDGQLLGRRSFEVRVCACPGRDRKTEES--NF 
Hsp53  (223) -PEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVHVCACPGRDRRTEEE--NL 
 
 
Mep53  (323) LPPCKQS-PKKGQ----KVNIINEITTVTP---GGKKRK---AEDEP--FTLSVRGRENYEILCRLRDSL 
Mtp53  (323) LPPCKQS-PKKGQ----KVNIINEITTVTP---GGKKRK---AEDEP--FTLSVRGRENYEILCRLRDSL 
Map53  (329) LPPMVSGGVKKSQMP--KFSMGTEITTVS----SGKKRK---FEDDEQTFTLTVRGRENYDMLCKIRDSL 
Dmp53  (278) KKRKSVPEAAEEDEPSKVRRCIAIKTEDTE---SNDSR-DCDDSAAEWNVSRTPDGDYRLAITCP-NKEW 
Xlp53  (264) TKK-----RGLKPSG--KRELAHPPSSEPPLP---KKR-LVVDDDEE-IFTLRIKGRSRYEMIKKLNDAL 
Drp53  (258) KKDQETKTMAKTTTGT-KRSLVKESSSATLRPEGSKKAKGS-SSDEE-IFTLQVRGRERYEILKKLNDSL 
Bbp53  (254) RKDQETKTLDKIPSAN-KRSLTKDSTSSVPRPEGSKKAKLSGSSDEE-IYTLQVRGKERYEMLKKINDSL 
Hsp53  (290) RKKG--EPHHELPPGSTKRALSNNTSSSP-QP---KKK----PLDGE-YFTLQIRGRERFEMFRELNEAL 
 
 
Mep53  (380) ELSSMVPQNQIDVYKQKQLDTNRQWLSMILARENK-----NKLMKKVKRPQHRPG--IKSRT- 
Mtp53  (380) ELSSMVPQNQIDVYKQKQLDTNRQWLSMILARENK-----NKLMKKVKRPQHRPG--IKSRT- 
Map53  (390) EIAALLPQNQLQSLKQKQVEVQRQWLTNVLAKEGK-----SRLIKKK----HRPGKIIRHPLK 
Dmp53  (343) LLQSIEGMIKE-----AAAEVLRNPNQENLRRHA------NKLLSLKK----RAY---ELP-- 
Xlp53  (322) ELQESLDQ-------QKVTIKCRKCRDEIKPKKG------KKLLVKDE----QPD----SE-- 
Drp53  (325) ELSDVVPASDAEKYRQKFMTKNKKENRESSEPKQG-----KKLMVKDEG---RSD----SD-- 
Bbp53  (322) ELSDVVPPSEMDRYRQKLLTKGKKKDGQTPEPKRG-----KKLMVKDE----KSD----SD-- 
Hsp53  (349) ELKDAQAG--------KEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTE----GPD----SD-- 

Figure 1: 
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Figure 3 
 
Mep53_v1    1 ------------AGA-------GAGAA--GTTTCCA----ATTGGT--CCAG--GA-----ACATTGA-GGA-------- 
Mep53_v2    1 ------------AGA-------GAGAA--GTTTCCA----ATTGGT--CCAG--GA-----ACATTGA-GGA-------- 
Mep53_v3    1 ------------AGA-------GAGAA--GTTTCCA----ATTGGT--CCAG--GA-----ACATTGA-GGA-------- 
Mtp53       1 ------------AGA-------GAGAA--GTTTCCA----ATTGGT--TCAG--GA-----ACATTGA-GGA-------- 
Map53       1 AAATACCAACTCAAATCGTTGTGAAAATGGTTATTATGAGGTCGATGGCCAGTCGATGTTTACATTGACGGAACTGACGA 
 
 
Mep53_v1   38 ------TATATAAAGACCTTGCTTTA---------ATGTGGTGCATTCATTTTGGA---CAATTATAGA--------CAT 
Mep53_v2   38 ------TATATAAAGACCTTGCTTTA---------ATGTGGTGCATTCATTTTGGA---CAATTATAGA--------CAT 
Mep53_v3   38 ------TA------------------------------------------------------------------------ 
Mtp53      38 ------TATATAAGGACCTTGCTTTA---------ATGTGGTGCATTCATTT-GGA---CTATAATAGA--------TAT 
Map53      81 GTGCTCTACTGAAAAACTTTACTCCGTTTTTTGAGATCTGATGAAAT-ATCCAAGATGGCAGTTGTAAAAACACTAACAT 
 
 
Mep53_v1   92 TTATCAAA-ATCTTTTGGTATACAGTGAGATCCAGATGACTCCATGCTCCTGAAAGCAAGGATAATTGATATTTTATAGA 
Mep53_v2   92 TTATCAAA-ATCTTTTGGTATACAGTGAGATCCAGATGACTCCATGCTCCTGAAAGCAAGGATAATTGATATTTTATAGA 
Mep53_v3   40 ----------------------------------------------------------------ATTGATATTTTATAGA 
Mtp53      91 TTATCAAA-ATCTTTTGGTATACAGTAAGATCCAGATG-------CGTCCTGAAAGCAAGGATAATTGATATTTTAACGA 
Map53     160 TAGTCCAACAAAACTGGATATGTAACGAGCCAAATCTGAGATAATATTACCCAAACCACCACAAATAAACAAGGAAAGGC 
 
 
Mep53_v1  171 ACTTATCACGTCACCTCCTGCCATTTCACTGATGACCAAGGCAGCAAC-----ATATGTGTTCAAT---TCATTATCGTT 
Mep53_v2  171 ACTTATCACGTCACCTCCTGCCATTTCACTGATGACCAAGGCAGCAAC-----ATATGTGTTCAAT---TCATTATCGTT 
Mep53_v3   56 ACTTATCACGTCACCTCCTGCCATTTCACTGATGACCAAGGCAGCAAC-----ATATGTGTTCAAT---TCATTATCGTT 
Mtp53     163 ACTTATCACGTCACCTCCTGCCATTTCACTGATGACCAAGGCAGCAAC-----TAATGTGTTCAAA---TCATTATCGTT 
Map53     240 ACTTGTCCAGCGACCTT---CCATTCTCCAAGAGTTCCAAACAGCAGCCAATGAAATGTGTTCAGTCGCTCATTATCGAT 
 
 
Mep53_v1  243 TCATTGTTGGT-----GGTGGTGGG--TCTCAT------------ATTG-------GTTT------GTTTGTTAGTTA-- 
Mep53_v2  243 TCATTGTTGGT-----GGTGGTGGG--TCTCAT------------ATTG-------GTTT------GTTTGTTAGTTA-- 
Mep53_v3  128 TCATTGTTGGT-----GGTGGTGGG--TCTCAT------------ATTG-------GTTT------GTTTGTTAGTTA-- 
Mtp53     235 TCATTGGTTGT-------TGGTAGG--TCTCAT------------ATTG-------GTTT------GGTTGTTAGTTA-- 
Map53     317 --GCTGTTAACATACCGTCAATAAACATCTCATTCAATCATAAACATTATCCCTTCATTTCAAAGAGTTCATTATTTAGG 
 
 
Mep53_v1  289 ------TAAGAGTTT-GAGTA--CATAG---ATATTTATT-TTAT----------AGGGCATGGTTTTAGAAAT-CAAGA 
Mep53_v2  289 ------TAAGAGTTT-GAGTA--CATAG---ATATTTATT-TTAT----------AGGGCATGGTTTTAGAAAT-CAAGA 
Mep53_v3  174 ------TAAGAGTTT-GAGTA--CATAG---ATATTTATT-TTAT----------AGGGCATGGTTTTAGAAAT-CAAGA 
Mtp53     279 ------TAAGAGTTTTGAGGA--CATAG---ATATTTATT-TTAT----------AGGGCATGGTTTTAGAAAT-CAAGA 
Map53     395 TCACTTTTAAAGTTCAGAATCATTATAACATATATTCACTCTTATCATGCTCAAAAGTGCCTGAAATTTAAAATATAAGC 
 
 
Mep53_v1  345 ATTTT-A----GA-----GGATAATTTTATATTTTT--TTCTTGTTTTTGAATGACATGGATTGTCTTTTAGTGAAAAGC 
Mep53_v2  345 ATTTT-A----GA-----GGATAATTTTATATTTTT--TTCTTGTTTTTGAATGACATGGATTGTCTTTTAGTGAAAAGC 
Mep53_v3  230 ATTTT-A----GA-----GGATAATTTTATATTTTT--TTCTTGTTTTTGAATGACATGGATTGTCTTTTAGTGAAAAGC 
Mtp53     336 ATTTTTA----GA-----GGATAAATATATATATTTGTTTCTTGTTTTTGAATGACATTGATTGTCTTTTAGTGAAAAGC 
Map53     475 ATTTTTATCACAATTATTAGATAAAAAGATATGCCTAGATCCTATT----AATTAGAAGAATCTTGTTTTAGTTTAAA-T 
 
 
Mep53_v1  413 ATTTGAATCTGTTTCTGTATGAAAGAAATTT--AAGACGAGAGTT---CTGAATC-TCATGTTG-----TTTT--GTTTA 
Mep53_v2  413 ATTTGAATCTGTTTCTGTATGAAAGAAATTT--AAGACGAGAGTT---CTGAATC-TCATGTTG-----TTTT--GTTTA 
Mep53_v3  298 ATTTGAATCTGTTTCTGTATGAAAGAAATTT--AAGACGAGAGTT---CTGAATC-TCATGTTG-----TTTT--GTTTA 
Mtp53     407 ATTTGA-TCTGCTTCTATATGAAAGAAATTT--AGGGCAAGAGTT---NTGAATC-TCAAGT-------TTTT--TTTTG 
Map53     550 ATAGAAATCACTTTTATTGTTAAAGGATTTTTTAGTCTGGTAGTTTTTCTTACTTATTATATAGAAACATTTTAAGTTTA 
 
 
Mep53_v1  480 GAT----TTTTTTATTTAAATTGAATC------AAAGTCTATCGGCTTTTT-------ATCTTTTGCCTAACAATTTGA- 
Mep53_v2  480 GAT----TTTTTTATTTAAATTGAATC------AAAGTCTATCGGCTTTTT-------ATCTTTTGCCTAACAATTTGA- 
Mep53_v3  365 GAT----TTTTTTATTTAAATTGAATC------AAAGTCTATCGGCTTTTT-------ATCTTTTGCCTAACAATTTGA- 
Mtp53     471 TTT----TTTTTTATTTAAATATAAGC------AAAGTCTATCAGCTTTTT-------ATCTTTTGCCTAACAATTTGA- 
Map53     630 AGTCATATTGTCCGTCCAAGTAGGATTGTTTTTAGAATCTTCTCACACATTCACAGAGATCTGATTCCTAAGGATCTGAA 
 
 
Mep53_v1  542 --TATTTATTGAAAATTTATGGTGTTATAGACTTCCCTCCCAA----AATTAGATATGGA---ACTAGATGGTTTTAC-- 
Mep53_v2  542 --TATTTATTG-----------------------------------------------GA---ACTAGATGGTTTTAC-- 
Mep53_v3  427 --TATTTATTGAAAATTTATGGTGTTATAGACTTCCCTCCCAA----AATTAGATATGGA---ACTAGATGGTTTTAC-- 
Mtp53     533 --TATTTATTGAAAATTTATGGTGTTATAGACTTACATCNCAA----AATTTGATATGAA---ACAAGGTGGTTTTAC-- 
Map53     710 TTTTTCTCTCTCTTTTTTGTAGTGCTATGTACATAGAGTGTGATGTCAATTAAATCTGATTTTACTTGGCAGTCTGACTT 

potential ARE

CPE 

ARE-1 CPE-1 CPE-2 

ARE-2 ARE-3 

K-Box 
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Figure 3 continued 
 
 
Mep53_v1  611 -AAAA-AAAA-AGATCTTTTGAA----GAAATTTT-TGATATTTTTGAAGAATCTCTTTT---CTTCCTAGTT--ATTG- 
Mep53_v2  568 -AAAA-AAAA-AGATCTTTTGAA----GAAATTTT-TGATATTTTTGAAGAATCTCTTTT---CTTCCTAGTT--ATTG- 
Mep53_v3  496 -AAAA-AAAA-AGATCTTTTGAA----GAAATTTT-TGATATTTTTGAAGAATCTCTTTT---CTTCCTAGTT--ATTG- 
Mtp53     602 -CCTACAAAA-AAAACTTTTTAA----GAAATTTT-TGATATATTTGAAGTATCTCTTTT---CTTCATAGTT--ATTG- 
Map53     790 TGAAATAAAATAAATAGTGGGAAATCTGAAGTTCCATTATATTGTT-----ATTTCTTTTTAGCTTCTTAGCTCCAATGT 
 
 
Mep53_v1  677 -AATAGT----------GCT--TACATT----TGTAAATA--ATTTTCTATATAATATTTT----TTTTTTTT------- 
Mep53_v2  634 -AATAGT----------GCT--TACATT----TGTAAATA--ATTTTCTATATAATATTTT----TTTTTTTT------- 
Mep53_v3  562 -AATAGT----------GCT--TACATT----TGTAAATA--ATTTTCTATATAATATTTT----TTTTTTTT------- 
Mtp53     669 -CATAGT----------GCT--TACATT----TGTAAATA--ATTTTCTATATAATATTAA----TTTTTTTT------- 
Map53     865 TCATAATCTCATACACCGCTATTCCATTGTCATGGAAACAGAATTCACCA-AGAATATGCCGAGCTTGCATTTAAAGGAA 
 
 
Mep53_v1  727 -TATTTCTTTAATGTGATATGTCTTTGAA-ATGTGCTATTTGTGTAATATATAATAATT-ATTGGATATATTTATTTAAC 
Mep53_v2  684 -TATTTCTTTAATGTGATATGTCTTTGAA-ATGTGCTATTTGTGTAATATATAATAATT-ATTGGATATATTTATTTAAC 
Mep53_v3  612 -TATTTCTTTAATGTGATATGTCTTTGAA-ATGTGCTATTTGTGTAATATATAATAATT-ATTGGATATATTTATTTAAC 
Mtp53     719 --ATTTCTTTCATGTGATATGTCTTTGAA-ATGTGCTATTTGTGTAATATATAATAATT-ATTTGATATATTTATTTAAC 
Map53     944 CTATACTGCCAATGT-ATACATGATTGATTGCGTTTCATATGTTTTACCTGTGAAATTTTATTGTAAATATTTATTTA-- 
 
 
Mep53_v1  804 TGATGTAAATATTTT--AAGGGTTATTTGTGAAGCATTGCAATAAGATGTTTCTGTTTATTAACCTATAGTTGGTAGCAT 
Mep53_v2  761 TGATGTAAATATTTT--AAGGGTTATTTGTGAAGCATTGCAATAAGATGTTTCTGTTTATTAACCTATAGTTGGTAGCAT 
Mep53_v3  689 TGATGTAAATATTTT--AAGGGTTATTTGTGAAGCATTGCAATAAGATGTTTCTGTTTATTAACCTATAGTTGGTAGCAT 
Mtp53     795 TGATGTAAATATTTT--AAG---CATTT-------------------------------TTAACTTATAGTTGTCAGCAT 
Map53    1021 TTGTATATTTATTTTCAAAATGTTACCTGT----------------ATATTTGTAATATTTTACTTACATTTGTATGAAA 
 
 
Mep53_v1  882 TTGTATAATGCCATTCAATAAAATAA-TAAAGTA-ATG----- 
Mep53_v2  839 TTGTATAATGCCATTCAATAAAATAA-TAAAGTA-ATG----- 
Mep53_v3  767 TTGTATAATGCCATTCAATAAAATAA-TAAAGTA-ATG----- 
Mtp53     839 TTGTATAATGCCNTTCAAGAAAATAA-TAAAGTG-ATG----- 
Map53    1085 CTGCAAAAAGCAGGATGAAAGAGCAAATAAATTGTATAAAACG 
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Motif #1    Parsimony score: 2.00 
species       position
MEP53_V1         221  tgtgtt 
MEP53_V3         106  tgtgtt 
MEP53_V2         221  tgtgtt 
MTP53            213  tgtgtt 
MAP53            292  tgtgtt 
TCP53            233  tgtgtt 
TMP53            132  tgtgtt 
TMP53            235  tgtgtt 
GGP53            335  tgcttt 
HSP53            130  tgcttt 
XLP53            160  tgcgtt 
OMP53            362  tgtgtt

Motif #2      Parsimony score: 2.00 
species       position 
MEP53_V1         308  tattta 
MEP53_V1         487  tattta 
MEP53_V3         372  tattta 
MEP53_V3         426  tattta 
MEP53_V2         308  tattta 
MEP53_V2         487  tattta 
MTP53            299  tattta 
MTP53            478  tattta 
MAP53            386  tattta 
TCP53            406  tattta 
TMP53            359  tatttt 
TMP53            418  ttttta 
TMP53            422  tatgta 
TMP53            460  tattca 
GGP53            328  ttttta 
GGP53            363  ttttta 
HSP53            229  ttttta 
XLP53            234  tattta 
OMP53            205  tattta
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Mep53_v1  
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Motif #1    Parsimony score: 0.00 
species     position 
MEP53_V1       231  tcattatcg 
MEP53_V2       231  tcattatcg 
MEP53_V3       116  tcattatcg 
MTP53          223  tcattatcg 
MAP53          305  tcattatcg

Motif #3    Parsimony score: 0.00 
species     position 
MEP53_V1       220  atgtgttca 
MEP53_V2       220  atgtgttca 
MEP53_V3       105  atgtgttca 
MTP53          212  atgtgttca 
MAP53          291  atgtgttca

Motif #2    Parsimony score: 0.00 
species     position
MEP53_V1       725  ttatttctt 
MEP53_V2       682  ttatttctt 
MEP53_V3       610  ttatttctt 
MTP53          716  ttatttctt 
MAP53          833  ttatttctt

Motif #4    Parsimony score: 0.00 
species     position 
MEP53_V1       747  ctttgaaat 
MEP53_V2       704  ctttgaaat 
MEP53_V3       632  ctttgaaat 
MTP53          738  ctttgaaat 
MAP53          786  ctttgaaat
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