151 research outputs found

    A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM

    Get PDF
    We present Korbit, a large-scale, open-domain, mixed-interface, dialogue-based intelligent tutoring system (ITS). Korbit uses machine learning, natural language processing and reinforcement learning to provide interactive, personalized learning online. Korbit has been designed to easily scale to thousands of subjects, by automating, standardizing and simplifying the content creation process. Unlike other ITS, a teacher can develop new learning modules for Korbit in a matter of hours. To facilitate learning across a widerange of STEM subjects, Korbit uses a mixed-interface, which includes videos, interactive dialogue-based exercises, question-answering, conceptual diagrams, mathematical exercises and gamification elements. Korbit has been built to scale to millions of students, by utilizing a state-of-the-art cloud-based micro-service architecture. Korbit launched its first course in 2019 on machine learning, and since then over 7,000 students have enrolled. Although Korbit was designed to be open-domain and highly scalable, A/B testing experiments with real-world students demonstrate that both student learning outcomes and student motivation are substantially improved compared to typical online courses

    The Structure of the Plk4 Cryptic Polo Box Reveals Two Tandem Polo Boxes Required for Centriole Duplication

    Get PDF
    Centrioles are key microtubule polarity determinants. Centriole duplication is tightly controlled to prevent cells from developing multipolar spindles, a situation that promotes chromosomal instability. A conserved component in the duplication pathway is Plk4, a polo kinase family member that localizes to centrioles in M/G1. To limit centriole duplication, Plk4 levels are controlled through trans-autophosphorylation that primes ubiquitination. In contrast to Plks 1–3, Plk4 possesses a unique central region called the “cryptic polo box”. Here, we present the crystal structure of this region at 2.3 Å resolution. Surprisingly, the structure reveals two tandem, homodimerized polo boxes, PB1-PB2, that form a unique, winged architecture. The full PB1-PB2 cassette is required for binding the centriolar protein Asterless as well as robust centriole targeting. Thus, with its C-terminal polo box (PB3), Plk4 has a triple polo box architecture that facilitates oligomerization, targeting, and promotes trans-autophosphorylation, limiting centriole duplication to once per cell cycle

    Counting the Acid Sites in a Commercial ZSM-5 Zeolite Catalyst

    Get PDF
    This work was funded by Johnson Matthey plc. through the provision of industrial CASE studentships in partnership with the EPSRC (AZ (EP/N509176/1), APH (EP/P510506/1)). Experiments at the ISIS Neutron and Muon Source were made possible by beam time allocations from the Science and Technologies Facilities Council.45,46 Resources and support were provided by the UK Catalysis Hub via membership of the UK Catalysis Hub consortium and funded by EPSRC grants EP/R026815/1 and EP/R026939/1Peer reviewedPublisher PD

    New Symmetries in Crystals and Handed Structures

    Full text link
    For over a century, the structure of materials has been described by a combination of rotations, rotation-inversions and translational symmetries. By recognizing the reversal of static structural rotations between clockwise and counterclockwise directions as a distinct symmetry operation, here we show that there are many more structural symmetries than are currently recognized in right- or left-handed handed helices, spirals, and in antidistorted structures composed equally of rotations of both handedness. For example, though a helix or spiral cannot possess conventional mirror or inversion symmetries, they can possess them in combination with the rotation reversal symmetry. Similarly, we show that many antidistorted perovskites possess twice the number of symmetry elements as conventionally identified. These new symmetries predict new forms for "roto" properties that relate to static rotations, such as rotoelectricity, piezorotation, and rotomagnetism. They also enable symmetry-based search for new phenomena, such as multiferroicity involving a coupling of spins, electric polarization and static rotations. This work is relevant to structure-property relationships in all material structures with static rotations such as minerals, polymers, proteins, and engineered structures.Comment: 15 Pages, 4 figures, 3 Tables; Fig. 2b has error

    Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability

    Get PDF
    Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification

    Bush the transnationalist: a reappraisal of the unilateralist impulse in US foreign policy, 2001-2009

    Get PDF
    This article challenges the common characterisation of George W. Bush’s foreign policy as “unilateral.” It argues that the Bush administration developed a new post-9/11 understanding of terrorism as a transnational, networked phenomenon shaped by the forces of globalisation. This led to a new strategic emphasis on bi- and multilateral security co-operation and counterterrorism operations, especially outside of Afghanistan and Iraq, driven by the perceived need to counter a transnational security challenge present in multiple locations. This (flawed) attempt to engage with transnational security challenges supplemented the existing internationalist pillar of the Bush administration’s foreign policy. Highlighting the transnational realm of international relations and the ways in which the Bush administration was able to co-opt other states to tackle perceived transnational challenges also shows the high importance the administration attached to concerted action even as it frequented eschewed institutional multilateralism

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies
    corecore