38 research outputs found

    Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aedes aegypti </it>(Linnaeus, 1762) and <it>Aedes albopictus </it>(Skuse, 1894) are the main vectors of dengue (DENV) and chikungunya (CHIKV) viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout Central Africa no recent data are available susceptible/resistant status of either vector species since the introduction/arrival of <it>Ae. albopictus </it>in this area. We therefore studied the level of resistance of these two major vectors to insecticides commonly used in Africa for mosquito control.</p> <p>Results</p> <p><it>Aedes aegypti </it>and <it>Ae. albopictus </it>were sampled in six urban localities of Cameroon (Garoua, Bertoua, Yaoundé, Bafia, Buea) and Gabon (Libreville). Larval bioassays, carried out to determine the lethal concentrations (LC<sub>50 </sub>and LC<sub>95</sub>) and resistance ratios (RR<sub>50 </sub>and RR<sub>95</sub>) suggested that both vector species were susceptible to <it>Bti </it>(<it>Bacillus thuringiensis var israeliensis</it>) and temephos. Bioassays were also performed on adults using WHO diagnostic test kits to assess phenotypic resistance to deltamethrin, DDT, fenitrothion and propoxur. These experiments showed that one population of <it>Ae. aegypti </it>(Libreville) and two populations of <it>Ae. albopictus </it>(Buea and Yaoundé) were resistant to DDT (mortality 36% to 71%). Resistance to deltamethrin was also suspected in <it>Ae. albopictus </it>from Yaoundé (83% mortality). All other field mosquito populations were susceptible to deltamethrin, DDT, fenitrothion and propoxur. No increase in the knockdown times (Kdt<sub>50 </sub>and Kdt<sub>95</sub>) was noted in the Yaoundé resistant population compared to other <it>Ae. albopictus </it>populations, suggesting the possible involvement of metabolic resistance to deltamethrin and DDT.</p> <p>Conclusion</p> <p>In view of the recent increase in dengue and chikungunya outbreaks in Central Africa, these unique comparative data on the insecticide susceptibility of <it>Ae. aegypti </it>and <it>Ae. albopictus </it>could help public health services to design more effective vector control measures.</p

    Fifteen Years of Annual Mass Treatment of Onchocerciasis with Ivermectin Have Not Interrupted Transmission in the West Region of Cameroon

    Get PDF
    We followed up the 1996 baseline parasitological and entomological studies on onchocerciasis transmission in eleven health districts in West Region, Cameroon. Annual mass ivermectin treatment had been provided for 15 years. Follow-up assessments which took place in 2005, 2006, and 2011 consisted of skin snips for microfilariae (mf) and palpation examinations for nodules. Follow-up Simulium vector dissections for larval infection rates were done from 2011 to 2012. mf prevalence in adults dropped from 68.7% to 11.4%, and nodule prevalence dropped from 65.9% to 12.1%. The decrease of mf prevalence in children from 29.2% to 8.9% was evidence that transmission was still continuing. mf rates in the follow-up assessments among adults and in children levelled out after a sharp reduction from baseline levels. Only three health districts out of 11 were close to interruption of transmission. Evidence of continuing transmission was also observed in two out of three fly collection sites that had infective rates of 0.19% and 0.18% and ATP of 70 (Foumbot) and 300 (Massangam), respectively. Therefore, halting of annual mass treatment with ivermectin cannot be done after 15 years as it might escalate the risk of transmission recrudescence

    Kdr-based insecticide resistance in Anopheles gambiae s.s populations in

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The spread of insecticide resistance in the malaria mosquito, <it>Anopheles gambiae </it>is a serious threat for current vector control strategies which rely on the use of insecticides. Two mutations at position 1014 of the S<sub>6 </sub>transmembrane segment of domain II in the voltage gated sodium channel, known as <it>kdr </it>(<it>knockdown resistance</it>) mutations leading to a change of a Leucine to a Phenylalanine (L1014F) or to a Serine (L1014S) confer resistance to DDT and pyrethroid insecticides in the insect. This paper presents the current distribution of the <it>kdr </it>alleles in wild <it>Anopheles gambiae </it>populations in Cameroon.</p> <p>Results</p> <p>A total of 1,405 anopheline mosquitoes were collected from 21 localities throughout Cameroon and identified as <it>An. gambiae </it>(N = 1,248; 88.8%), <it>An. arabiensis </it>(N = 120; 8.5%) and <it>An. melas </it>(N = 37; 2.6%). Both <it>kdr </it>alleles 1014F and 1014S were identified in the M and S molecular forms of <it>An. gambiae </it>s.s. The frequency of the 1014F allele ranged from 1.7 to 18% in the M-form, and from 2 to 90% in the S-form. The 1014S allele ranged from 3-15% in the S-form and in the M-form its value was below 3%. Some specimens were found to carry both resistant <it>kdr </it>alleles.</p> <p>Conclusion</p> <p>This study provides an updated distribution map of the <it>kdr </it>alleles in wild <it>An. gambiae </it>populations in Cameroon. The co-occurrence of both alleles in malaria mosquito vectors in diverse ecological zones of the country may be critical for the planning and implementation of malaria vector control interventions based on IRS and ITNs, as currently ongoing in Cameroon.</p

    Patterns of anopheline feeding/resting behaviour and Plasmodium infections in North Cameroon, 2011-2014: implications for malaria control.

    Get PDF
    BACKGROUND: Effective malaria control relies on evidence-based interventions. Anopheline behaviour and Plasmodium infections were investigated in North Cameroon, following long-lasting insecticidal net (LLIN) distribution in 2010. METHODS: During four consecutive years from 2011 to 2014, adult mosquitoes were collected indoors, outdoors and in exit traps across 38 locations in the Garoua, Pitoa and Mayo-Oulo health districts. Anophelines were morphologically and molecularly identified, then analysed for blood meal origins and Plasmodium falciparum circumsporozoite protein (Pf-CSP). Blood from children under 5 years-old using LLINs was examined for Plasmodium infections. RESULTS: Overall, 9376 anophelines belonging to 14 species/sibling species were recorded. Anopheles gambiae (s.l.) [An. arabiensis (73.3%), An. coluzzii (17.6%) and An. gambiae (s.s.) (9.1%)] was predominant (72%), followed by An. funestus (s.l.) (20.5%) and An. rufipes (6.5%). The recorded blood meals were mainly from humans (28%), cattle (15.6%) and sheep (11.6%) or mixed (45%). Pf-CSP rates were higher indoors (3.2-5.4%) versus outdoors (0.8-2.0%), and increased yearly (χ2 < 18, df = 10, P < 0.03). Malaria prevalence in children under 5 years-old, in households using LLINs was 30% (924/3088). CONCLUSIONS: The present study revealed the variability of malaria vector resting and feeding behaviour, and the persistence of Plasmodium infections regardless the use of LLINs. Supplementary interventions to LLINs are therefore needed to sustain malaria prevention in North Cameroon

    Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indoor residual spraying and insecticide-treated nets (ITN) are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in <it>Anopheles gambiae </it>sensu lato from an area of large scale ITN distribution programme in south-western Chad.</p> <p>Methods</p> <p>Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The <it>An. gambiae </it>Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the <it>kdr </it>locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA).</p> <p>Results</p> <p>During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1%) was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9) with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. <it>Anopheles arabiensis </it>was the predominant species of the <it>An. gambiae </it>complex in the study area, representing 75 to 100% of the samples. Screening for <it>kdr </it>mutations detected the L1014F mutation in 88.6% (N = 35) of surviving <it>An</it>. <it>gambiae </it>sensu stricto S form mosquitoes. All surviving <it>An. arabiensis </it>(N = 49) and M form <it>An</it>. <it>gambiae </it>s.s. (N = 1) carried the susceptible allele.</p> <p>Conclusion</p> <p>This first investigation of malaria vector susceptibility to insecticides in Chad revealed variable levels of resistance to pyrethroid insecticides (permethrin and deltamethrin) in most <it>An</it>. <it>gambiae </it>s.l. populations. Resistance was associated with the L1014F <it>kdr </it>mutation in the S form of <it>An. gambiae </it>s.s.. Alternative mechanisms, probably of metabolic origin are involved in <it>An. arabiensis</it>. These results emphasize the crucial need for insecticide resistance monitoring and in-depth investigation of resistance mechanisms in malaria vectors in Chad. The impact of reduced susceptibility to pyrethroids on ITN efficacy should be further assessed.</p

    Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon

    Get PDF
    Background: Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon. Methods: Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method. Results: Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance phenotypes, suggesting that the kdr mechanism may act with certain cofactors to be identified. Conclusion: These results demonstrate the ongoing spread of kdr alleles in An. gambiae in Central Africa. The rapid evolution of insecticide resistance in this highly dynamic and genetically polymorphic species remains a challenge for its control

    Field efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet<sup>® </sup>3.0, against wild pyrethroid-resistant <it>Anopheles gambiae s.l</it>. in West and Central Africa.</p> <p>Methods</p> <p>A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina Faso) and Pitoa (Cameroon) to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet<sup>® </sup>3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof) comparatively to the WHO recommended PermaNet<sup>® </sup>2.0 (unwashed and washed 20-times) and a conventionally deltamethrin-treated net (CTN).</p> <p>Results</p> <p>The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet<sup>® </sup>2.0 were excellent (>80%) in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance) and Vallée du Kou (presence of the L1014F <it>kdr </it>mutation), PermaNet<sup>® </sup>3.0 showed equal or better performances than PermaNet<sup>® </sup>2.0. It should be noted however that the deltamethrin content on PermaNet<sup>® </sup>3.0 was up to twice higher than that of PermaNet<sup>® </sup>2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet<sup>® </sup>3.0 still fulfilled the WHO requirement for LLIN.</p> <p>Conclusion</p> <p>The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet<sup>® </sup>3.0 for the control of pyrethroid resistant mosquito populations in Africa.</p

    Spatial and temporal development of deltamethrin resistance in malaria vectors of the Anopheles gambiae complex from North Cameroon

    Get PDF
    The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization’s (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70–85% to 49–73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91–97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0–30% in 2011 to 18–61% in 2014–2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon
    corecore