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Abstract 

Background: Effective malaria control relies on evidence‑based interventions. Anopheline behaviour and Plasmo-
dium infections were investigated in North Cameroon, following long‑lasting insecticidal net (LLIN) distribution in 
2010.

Methods: During four consecutive years from 2011 to 2014, adult mosquitoes were collected indoors, outdoors and 
in exit traps across 38 locations in the Garoua, Pitoa and Mayo‑Oulo health districts. Anophelines were morphologi‑
cally and molecularly identified, then analysed for blood meal origins and Plasmodium falciparum circumsporozoite 
protein (Pf‑CSP). Blood from children under 5 years‑old using LLINs was examined for Plasmodium infections.

Results: Overall, 9376 anophelines belonging to 14 species/sibling species were recorded. Anopheles gambiae (s.l.) 
[An. arabiensis (73.3%), An. coluzzii (17.6%) and An. gambiae (s.s.) (9.1%)] was predominant (72%), followed by An. funes-
tus (s.l.) (20.5%) and An. rufipes (6.5%). The recorded blood meals were mainly from humans (28%), cattle (15.6%) and 
sheep (11.6%) or mixed (45%). Pf‑CSP rates were higher indoors (3.2–5.4%) versus outdoors (0.8–2.0%), and increased 
yearly (χ2 < 18, df = 10, P < 0.03). Malaria prevalence in children under 5 years‑old, in households using LLINs was 30% 
(924/3088).

Conclusions: The present study revealed the variability of malaria vector resting and feeding behaviour, and the 
persistence of Plasmodium infections regardless the use of LLINs. Supplementary interventions to LLINs are therefore 
needed to sustain malaria prevention in North Cameroon.

Keywords: Mosquitoes, Alternative hosts, Long‑lasting insecticidal nets, Vector behaviour, Malaria infections, North 
Cameroon
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Background
Unprecedented progress has been recorded in malaria 
control, especially in Africa where a 42% reduction in 
case incidence and a 66% decline in the mortality rate 
occurred between 2000 and 2016 [1]. However, 200 mil-
lion cases were recorded in the African Region in 2017, 
accounting for 92% of the total case estimates in the 
world [1].

Approximately 150 different species of Anopheles mos-
quito have been described in sub-Saharan Africa (SSA); 
around 20 are primary or secondary malaria vectors [2]. 
The exceptionally high malaria transmission rates in SSA 
are in large part ascribed to the constant presence of effi-
cient and competent vectors, especially those belonging 
to the Anopheles gambiae complex and the An. funes-
tus group. The key elements that make these species 
highly efficient malaria vectors are anthropophagic and 
anthropophilic behaviour, i.e. a preference for humans as 
a source of blood, combined with indoor resting habits 
(endophily), and exploitation of breeding habitats created 
by human activities [3–5]. Knowledge of these vector 
innate feeding preferences and resting habits when com-
bined with data on host availability/accessibility accu-
rately predicts the intensity of malaria transmission [6]. 
Therefore, understanding how this propensity of malaria 
mosquitoes to feed on and live amongst humans, changes 
in response to anti-vector interventions is important for 
sustaining vector control. For instance, in South Africa, 
insecticide residual spraying (IRS) in houses was reported 
to significantly reduce the proportion of An. arabien-
sis that fed indoors on humans [7]. In this case, the IRS 
serves to decrease host availability and may either favour 
alternative innate host preferences in sections of the vec-
tor population or induce a “phenotypic plasticity” defined 
as the modification of host selection without changes 
in innate (genetic) host preference [8]. In the absence 
of insecticide resistance, the lack of host-selection phe-
notypic plasticity in human biting species may cause 
them to enter the houses and thus increases their likeli-
hood of being killed. Conversely, mosquitoes that do not 
enter houses will have a selective survival advantage and 
the intervention may have little effect, especially if these 
mosquitoes are opportunistic, resistant to insecticides or 
exhibit plasticity in host selection.

The major malaria vectors in Africa exhibit differential 
abilities to adapt in widely varying environmental condi-
tions, enabling their survival [4]. For instance, An. gam-
biae is known to exhibit a high preference for human 
hosts whereas An. arabiensis is regarded as more oppor-
tunistic [9–12]. However, both species, as well as their 
sibling species An. coluzzii and species of the An. funestus 
group, have been reported to rapidly develop pyrethroid 
resistance [13], which renders malaria vector control very 

complex. To design better vector control and disease 
prevention measures, it is essential to characterize the 
behavioural patterns of vector populations over the time 
and in a range of environmental conditions, especially in 
the context of pyrethroid resistance among sibling taxo-
nomic units. Such approach would probably be more 
appropriate than tailoring the interventions according to 
data on the whole group or the whole complex of vector 
species.

In Cameroon, the most efficient malaria vector species 
belong to the An. gambiae complex [An. gambiae (s.s.), 
An. coluzzii and An. arabiensis], followed by An. funes-
tus, An. nili and An. moucheti groups. Species such as 
An. paludis, An. pharoensis, An. hankocki and An. rufipes 
play secondary roles in malaria transmission [14–20]. 
Furthermore, pyrethroid resistance is widespread in the 
species of the An. gambiae complex [21–25] and deltame-
thrin resistance was more recently reported in An. rufipes 
from the North Region [26]. The number of malaria cases 
in Cameroon was estimated at 1.2 million in 2013, the 
majority of which were due to Plasmodium falciparum 
[27]. Efforts to curb malaria based on widespread use of 
long-lasting insecticidal nets (LLINs) alongside intensifi-
cation of case management led to a significant reduction 
of the prevalence in the general population from 46.3% 
in 2008 to 17.6% in 2017 [27, 28]. Insecticide treated nets 
(ITNs) act as physical and chemical barriers, prevent-
ing access by vector mosquitoes to human hosts, and 
reducing subsequent blood-feeding and Plasmodium 
parasite transmission. In order to inform vector control 
strategies and to identify any factors that may compro-
mise the impact of the interventions, there is a need for 
a close monitoring of vector populations and parasite 
transmission. Key entomological indicators to moni-
tor include vector abundance, resting/feeding behaviour 
and susceptibility to the insecticides used in ITNs or IRS. 
However in Cameroon, while the status of malaria vec-
tor resistance is well known, to date, data on their resting 
and feeding behaviour in the context of wide LLIN use is 
scarce. The present report presents data from four cross 
sectional surveys on malaria vector behaviour conducted 
yearly from 2011 to 2014 and a cross sectional survey 
on Plasmodium infections in North Cameroon (2013). 
This study is part of a multi-country project to assess the 
impact of insecticide resistance on the effectiveness of 
LLINs or IRS interventions [29].

Methods
Study sites and environmental landscapes
The study was conducted in 38 clusters (defined as vil-
lages or groups of hamlets with no less than 500 houses) 
distributed across 3 health districts (HD), namely 
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Garoua, (9°30′N, 13°40′E), Pitoa (9°21′N, 13°31′E) and 
Mayo Oulo (9°46′N, 13°44′E).

The three study HDs lie within the Soudanian climate 
domain with 700–1000 mm of annual rainfall with 3 
months of rains (July to October) and 9 months of dry 
season (November to June). The average temperature in 
this region is 35 ± 5  °C. The region contains 1,227,000 
inhabitants and makes up 65,576  km2, with 12–25 peo-
ple per  km2 in Mayo Oulo, 25–50 people per  km2 in 
Pitoa and 50–100 people per  km2 in Garoua. The region 
is strewn with rivers and the river valleys are adequate 
rice growing areas thus they constitute excellent breed-
ing sites for mosquitoes. Anopheles gambiae (s.l.) and An. 
funestus group are the main malaria vectors in this area.

Mosquito collection
The study began in November 2011, 18 months after the 
launch of a LLIN mass distribution campaign in North 
Cameroon in June 2010. Yearly cross-sectional entomo-
logical surveys were conducted during the high trans-
mission seasons between September and November for 
four consecutive years from 2011 to 2014. To monitor 
the effect of LLINs on local mosquito populations, only 
houses that possessed LLINs were selected for mosquito 
collection, and the same houses were visited each year. 
Adult mosquitoes were collected across 380 (38 × 10) 
houses randomly chosen in 38 study clusters, using 
3 conventional sampling methods: window exit traps 
(WETs), outdoor clay-pots (OCPs) as outdoor shelters 
and pyrethrum spray catches (PSCs) [30].

Ten WETs (one per sleeping bedroom window) were 
set up on windows between 5:00 and 6:00 pm and then 
checked the next day between 07:00 and 09:00 am for 2 
consecutive nights.

For outdoor collection, three 25–30 l OCPs contain-
ing 5–10 litres of water were placed in each of 3 selected 
compounds among those used for WETs (i.e. 9 pots per 
cluster). The pots were placed at 6:00 pm, preferably at 
the back of the house close to a bedroom and away from 
areas with a lot of human activities to avoid disturbing 
resting mosquitoes. Mosquitoes resting in the pots were 
collected the next day between 7:00 and 9:00 am for two 
successive days using mouth aspirators.

PSCs were performed between 6:00 and 9:00 am in all 
rooms of the 380 study houses once the WET and OCP 
collections were completed. White sheets were laid on 
the floor and over the furniture. Then all windows and 
doors were shut and rooms were sprayed with pyrethrum 
or pyrethroid based aerosols. The houses were then 
closed for 10–15 min to knock down the mosquitoes 
resting indoors. Mosquitoes that fell on the sheets were 
collected using forceps.

Mosquito samples from the three collection methods 
were kept separately for subsequent analysis.

Mosquito processing
Field collected mosquitoes were morphologically iden-
tified using keys for the species of the genus Anopheles 
[31, 32] and classified as fed or unfed, based on abdomi-
nal appearance. Each mosquito was then dissected and 
body parts placed into 3 tubes (head/thorax, abdomen 
and legs/wings). DNA was extracted from the legs and 
wings of An. gambiae (s.l.) specimens with CTAB 2% [33] 
and used for species identification by means of a PCR-
RFLP method [34]. All heads/thoraxes of the Anopheles 
samples were screened for Plasmodium falciparum cir-
cumsporozoite protein (CSP) and abdomens of fed speci-
mens checked for blood meal origins using ELISA [35, 
36]. Monoclonal antibodies against human, cattle, pig, 
horse, chicken and sheep blood were used for blood meal 
ELISA.

Malaria prevalence survey
A malaria prevalence cross-sectional survey was con-
ducted in each cluster of the three study HDs in October 
2013. Data on LLINs ownership and usage were collected 
and 40–45 households owning LLINs were sampled per 
cluster for Plasmodium parasite screening in children 
0.5–5 years-old. Children were asked if they had slept 
under bed nets the previous night and if yes, whether 
they used the nets regularly or not. Furthermore, from 
the beginning of the study in 2011 and during the study 
period, the parents were encouraged by the study team 
to ensure net usage by their children, and the process 
was monitored by the community health workers. After 
informed consent of the parents, malaria diagnosis by 
rapid diagnostic test (RDT) (SD BIOLINE Malaria Ag Pf/
Pan(r) 05FK60; Standard Diagnostics Inc., Suwon City, 
South Korea) was performed by health personnel on 
the children, following the manufacturer’s instructions. 
Children positive by RDT were treated with artesunate-
amodiaquine according to the national guidelines. Blood 
slides and thick blood films were also taken. Microscopy 
was conducted using 10% Giemsa stain, and examined 
after completion of fieldwork by laboratory technicians. 
A second reading was carried out by a technician at 
OCEAC Laboratory (Yaoundé, Cameroon) and results 
were compared; the discrepancies were double checked. 
All technicians were blinded for RDT results.

Statistical analysis
The human blood index (HBI) was calculated by sum-
ming species blood meals from human only and mixed 
blood meals between human and animals divided by the 
total blood meals registered per species. Sporozoite rates 
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were calculated for each species, as the proportion of 
mosquitoes tested positive for ELISA CSP. The Pearson 
Chi-square test was performed to compare LLIN owner-
ship and use in the three HDs, as well as sporozoite rates 
between malaria vector species, collection methods and 
years of collection. A one-way ANOVA was conducted 
to compare the overall vector densities between indoors, 
exit and outdoor collection, as well as human blood indi-
ces. The Anderson-Darling 3-sample test of null was used 
to compare average relative densities of the major malaria 
vectors across the three HDs.

Results
Malaria vector species and abundance
Data on anopheline diversity and abundance are pre-
sented in Fig.  1. A total of 9376 anopheline specimens 
belonging to 14 species were collected across the 38 
study clusters. The anopheline fauna was more diverse in 
the Pitoa HD with 12 species recorded, followed by the 
Garoua HD with 9 species recorded, while only 6 spe-
cies were identified in samples from the Mayo Oulo HD. 
An. gambiae (s.l.) was predominant (72.0%, n = 6758), 
followed by An. funestus (s.l.) (20.5%, n = 1922) and An. 
rufipes (6.5%, n = 614). All other species represented less 
than 1% of the total (n = 82).

Among the 6758 An. gambiae (s.l.) collected, 3968 
specimens randomly selected for molecular identifica-
tion revealed three sibling species: An. arabiensis (73.3%), 
An. coluzzii (17.6%) and An. gambiae (9.1%). While An. 
coluzzii and An. gambiae were at relatively low  propor-
tion across the three HDs (5–12%), An. arabiensis was the 
predominant species of the entire fauna from the Mayo 
Oulo and Pitoa HDs (50–58%), followed by An. funestus 

(15–31%). In the Garoua HD, An. arabiensis occurred at 
similar proportions with An. funestus (30–34%), followed 
by An. rufipes (18%).

Long‑lasting insecticidal net usage and anopheline density 
indoors and outdoors
The proportions of households owning at least one LLIN 
varied between 60–71%, and the rates of LLINs utiliza-
tion between 43–54%, with no significant difference from 
one HD to another (χ2 < 3.38, df = 1, P > 0.1).

A total of 2592 clay pots and 2880 exit traps were used 
for collection of outdoor and exiting mosquitoes, while 
1440 rooms were sprayed for indoor collection; the mean 
relative vector densities are summarized in Table 1. In the 
Pitoa HD, the relative anopheline density (mean ± SD) 
was higher indoors (3.75 ± 0.96 anophelines/room), 
compared with exit traps and outdoors (1.47 ± 1.26 and 
2.19 ± 1.02 anophelines/trap, respectively), although the 
difference was not statistically significant (F(2,46) = 4 .00, 
P = 0.05). However, in the Garoua and Mayo Oulo HDs, 
there were no significant differences between mean rela-
tive densities among the different collection methods 
(F(24,70) < 1.67, P  > 0.2).

Regarding species distribution as shown in Table  2, 
there was no significant difference between the rela-
tive densities of An. arabiensis, An. coluzzii or An. gam-
biae (s.s.) caught outdoors, in exit traps or indoors 
(F(26,48) < 1.83, P > 0.1). Conversely, An. funestus (s.l.) was 
mostly found outdoors compared with indoors and exit 
traps (F(4,20) > 8.56, P < 0.01), suggesting exophilic ten-
dencies. The same tendency was observed in An. rufipes, 
although the differences were not statically significant.

Fig. 1 Species composition of anopheline samples collected in the Garoua, Pitoa and Mayo Oulo Health Districts (HD) from 2011 to 2014
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Temporal variations of vector densities
Densities of An. arabiensis, An. coluzzii, An. gambiae (s.s.) 
generally increased over the years, either indoors, in exit 
traps or outdoors in some cases (F(3,6) > 8.94, P   < 0.05). 
With An. arabiensis from Pitoa, An. coluzzii from Mayo 
Oulo and An. gambiae from Garoua, the increase was 
not linear (F(16,37) < 2.17, P  > 0.1) (Figs. 2, 3). However, no 
significant temporal variations of vector densities were 
observed outdoors versus indoors and exit traps, except 
in Pitoa where An. arabiensis, which was mostly caught 

Table 1 Long‑lasting insecticidal net ownership and usage versus anopheline densities indoors, in exit traps and outdoors across the 
Garoua, Pitoa and Mayo Oulo health districts

Abbreviations: LLINs ownership (%), percentage of households owning long-lasting insecticidal nets; LLINs use (%), percentage of households using long-lasting 
insecticidal nets; SD, standard deviation; F-value (one-way ANOVA); P-value: significance at 0.05%

Health district LLINs 
ownership 
(%)

LLINs use (%) Collection method No. of traps No. of 
Anopheles 
caught

Mean no. ± SD of 
Anopheles/trap

F-value P‑value

Garoua 60.1 42.9 Outdoors 1080 1307 1.21 ± 1.27 1.67 0.24

Exit trap 1200 1158 0.97 ± 0.70

Indoors 600 1091 1.82 ± 0.74

Pitoa 68.3 54.5 Outdoors 864 1889 2.19 ± 1.02 4.00 0.05

Exit trap 960 1412 1.47 ± 1.26

Indoors 480 1799 3.75 ± 0.96

Mayo Oulo 70.8 53.8 Outdoors 648 172 0.27 ± 0.30 0.43 0.56

Exit trap 720 225 0.31 ± 0.38

Indoors 360 325 0.90 ± 0.29

Table 2 Mean relative densities of major malaria vector species 
per collection method

Abbreviations: ADE, average density in exit trap; ADI, average density indoors; 
ADO, average density outdoors; SD, standard deviation

Species ADE ± SD ADI ± SD ADO ± SD P‑value

An. arabiensis 0.55 ± 0.57 0.92 ± 0.72 0.66 ± 0.54 0.2090

An. coluzzii 0.12 ± 0.13 0.22 ± 0.18 0.16 ± 0.14 0.1426

An. gambiae (s.s.) 0.05 ± 0.06 0.12 ± 0.11 0.09 ± 0.10 0.1980

An. funestus 0.14 ± 0.16 0.34 ± 0.39 0.91 ± 0.83 0.0034

An. rufipes 0.18 ± 0.19 0.11 ± 0.08 0.34 ± 0.25 0.0781

Fig. 2 Temporal variations of the densities of Anopheles arabiensis, Anopheles coluzzii and Anopheles gambiae collected outdoors, in exit traps and 
indoors
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indoors than outdoors and exit traps in 2012, was equally 
caught by the three collection methods in 2014.

Anopheles funestus and An. rufipes were mostly col-
lected outdoors over the course of the study, and no sig-
nificant variations were recorded in their densities during 
the four years of the survey (F(9,80) < 2.77, P  > 0.1).

Blood‑feeding indices
A total of 3014 blood-fed Anopheles corresponding to 
32% of the collected samples were analysed for blood 
meal origins. Data summarized in Table 3 revealed vari-
able proportions of single-host blood meals and mixed 
blood meals from one vector species to another and 

Fig. 3 Temporal variations of the densities of Anopheles funestus and Anopheles rufipes collected outdoors, in exit traps and indoors

Table 3 Trophic preference, human and animal blood indices of the five major malaria vectors

Abbreviations: n, number of blood meals tested; Mixed H/A, mixed human-animal blood; Mixed A/A, mixed animal-animal blood; HBI, human blood index

Note: Numbers in bold refer to HBI higher than 0.50

Health district Species Hosts (%) HBI

Humans Cattle Sheep Pigs Fowl Mixed H/A Mixed A/A

Garoua An. arabiensis (n = 386) 37.8 11.7 7.0 3.9 0.5 25.4 13.7 0.63
An. coluzzii (n = 159) 44.7 6.9 3.8 3.8 1.8 28.3 10.7 0.73
An. gambiae (s.s.) (n = 73) 61.4 5.5 5.5 2.9 0.0 11.0 13.7 0.73
An. funestus (n = 540) 12.2 18.9 27.0 0.6 0.2 13.3 27.8 0.26

An. rufipes (n = 266) 19.5 15.0 13.5 4.3 0.0 12.0 35.7 0.32

Total (n = 1424) 26.7 14.2 15.4 2.6 0.4 17.9 22.8 0.45

Pitoa An. arabiensis (n = 665) 29.9 14.1 10.8 1.9 0.0 23.0 20.3 0.53
An. coluzzii (n = 113) 39.8 8.0 2.7 0.9 0.0 39.8 8.8 0.80
An. gambiae (s.s.) (n = 57) 52.6 12.3 1.6 0.0 0.0 24.7 8.8 0.77
An. funestus (n = 357) 11.8 7.8 9.2 1.5 0.0 35.0 34.7 0.47

An. rufipes (n = 48) 10.4 12.5 4.2 4.2 0.0 35.4 33.3 0.46

Total (n = 1240) 25.9 11.6 9.0 1.6 0.0 28.5 23.4 0.54
Mayo Oulo An. arabiensis (n = 194) 42.3 7.2 1.0 0.0 0.0 33 16.5 0.75

An. coluzzii (n = 51) 51.0 0.0 0.0 0.0 0.0 41.2 7.8 0.92
An. gambiae (s.s.) (n = 30) 60.0 0.0 0.0 0.0 0.0 33.3 6.7 0.93
An. funestus (n = 56) 12.5 1.75 5.4 1.75 0.0 28.6 50 0.41

An. rufipes (n = 19) 15.8 21.1 10.5 0.0 0.0 21.1 31.5 0.37

Total (n = 350) 15.8 21.1 10.5 0.0 0.0 32.9 20.6 0.72
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from one health district to another. However, the over-
all proportion of single-host blood meals (53%, n = 1603) 
was significantly higher than mixed blood meals (47%, 
n = 1411) (χ2 = 24.46, df = 8, P < 0.005). Single-host blood 
meals were obtained mainly from humans (28%, n = 837), 
cattle (15.6%, n = 470) and sheep (11.6%, n = 350). Mixed 
blood meals were from human/animal (mainly between 
human/cattle and human/sheep) (24%, n = 724) and from 
animal/animal (mainly between cattle/sheep/pig) (23%, 
n = 687). Blood from humans, cattle, sheep and pigs 
was recorded in the five major malaria vector species, 
whereas blood from fowl was found only in An. colluzzi, 
An. gambiae and An. funestus.

The three sibling species of the An. gambiae complex 
showed 30–61% human blood meals, 11–41% mixed 
human/animal and 7–20% mixed animal/animal meals. 
The resulting HBIs ranged from 0.53 to 0.93 and were 
not statistically significant between the three species 
(F(12,16) = 2.89, P = 0.13). Conversely, 10–20% blood meals 
of An. funestus and An. rufipes were from human, 1–21% 
from animals, 12–35% from human/animal and 6–50% 
from animal/animal. Their HBIs ranged from 0.26 to 0.54 
and were significantly lower than those of the three sib-
ling species of the An. gambiae complex (F(2,120) = 34.37, 
P < 0.005).

No significant differences were observed when com-
paring the mean HBIs of the 5 vector species between the 
3 HD (F(20,120) < 1.57, P > 0.62).

Plasmodium falciparum circumsporozoite rates
Overall, 111 specimens among the 5153 analysed 
tested positive to P. falciparum CSP protein, with a 

mean sporozoite rate of 2.15%. The infected specimens 
belonged to 7 anopheline species out of the 14 species 
recorded in the study sites. The three sibling species of 
the Anopheles gambiae complex had the highest infection 
rates, corresponding to 4.76% (14/294), 3.95% (24/607) 
and 2.28% (59/2586) for An. gambiae (s.s.), An. coluzzii 
and An. arabiensis, respectively. The infection rates were 
higher in An. gambiae and An. coluzzii, compared with 
An. arabiensis (χ2= 9.74, df = 2, P = 0.007). For An. funes-
tus and An. rufipes, the infection rates were less than 1%, 
i.e. 0.77% (10/1403) and 0.71% (2/258), respectively. For 
An. pharoensis and An. longipalpis, 1/10 and 1/1 analysed 
specimens were CSP positive, respectively.

The distribution of infection rates among mosquito 
samples collected indoors, outdoors and exit traps across 
years of mosquito collection is summarized in Table  4. 
In the Garoua and Pitoa HDs, the infection rates were 
higher in anopheline samples collected indoors (3.22–
3.50%) compared with exit traps (1.62–2.08%) and out-
door samples (0.80–1.30%) (χ2 < 18, df = 10, P < 0.03). 
Furthermore in the Pitoa HD, the infection rates sig-
nificantly increased between 2011 and 2014 from 0.50% 
(3/600) to 2.49% (25/1004) (χ2 = 16.56, df = 4, P = 0.0008); 
while in the Garoua HD, two peaks of infections were 
recorded in 2012 (2/47, 4.25%) and 2014 (25/540, 4.63%). 
In the Mayo Oulo HD, the infection rates remained 
between 2.13% (1/47) and 4.61% (6/130) across the 4-year 
study period (χ2 = 0.57, df = 3, P = 0.90) and the differ-
ence between indoor, exit and outdoor infectivity was not 
statistically significant (χ2 = 2.06, df = 5, P = 0.36)

Table 4 Plasmodium falciparum circumsporozoite protein (CSP+) rates in Anopheles samples by method and year of collection

Abbreviations: n, number of mosquitoes tested; HD, health district; GRA, Garoua; PIT, Pitoa; MYO, Mayo Oulo; OUT, outdoors; EXIT, exit trap; IN, indoors

HD Collection 
method

Year of collection Total χ2 P‑value

2011 2012 2013 2014

n CSP+ (%) n CSP+ (%) n CSP+ (%) n CSP+ (%) n CSP+ (%)

GRA OUT 32 0 11 0 479 0.83 250 2.40 772 1.30 7.77 0.02

EXIT 16 0 9 0 287 1.05 121 4.96 433 2.08

IN 66 3.03 24 8.33 370 1.35 169 7.69 629 3.50

Total 114 1.75 47 4.25 1137 1.06 540 4.63 1834 2.23 22.42 0.00005

PIT OUT 407 0.25 184 0 181 1.10 484 1.45 1256 0.80 17.98 0.0001

EXIT 14 0 20 0 293 1.02 227 2.64 554 1.62

IN 179 1.12 351 1.12 295 5.76 293 4.09 1118 3.22

Total 600 0.50 555 0.72 769 2.86 1004 2.49 2928 1.84 16.56 0.0008

MYO OUT 3 0 21 0 30 0 44 4.55 98 2.04 2.06 0.36

EXIT 10 0 1 0 43 4.65 72 2.78 126 3.17

IN 34 2.94 5 20.00 57 7.02 71 4.22 167 5.39

Total 47 2.13 27 3.70 130 4.61 187 3.74 391 3.82 0.57 0.90
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Prevalence of Plasmodium infections in children 
under 5 years‑old
Data on Plasmodium infections in children under 5 
years-old were collected from 31 out of the 38 clusters 
with entomological data. A total of 3088 children (≈ 80 
children from 30 households/cluster) were examined 
for malaria infection using RDT and confirmed using 
microscopy. The mean age at the recruitment was 27.9 
(6–60) months. The number of fever cases (tempera-
ture ≥ 37.5  °C) was 1494/3088 (48.4%) and the num-
ber of positive RDT with fever was 958/1494 (64%). The 
overall malaria prevalence for the study population was 
30% (924/3088), increasing from Mayo Oulo HD (16%, 
85/540), to Garoua HD (23%, 340/1503) and Pitoa HD 
(48%, 499/1045) (Fig.  4). A high variability was seen in 
infection rates among the clusters of the same HD, i.e. 
28–70%, 6–42% and 2–25% in the Pitoa, Garoua and 
Mayou HDs, respectively. The infections were solely due 
to P. falciparum.

Discussion
Entomological and epidemiological monitoring and eval-
uation of interventions are of great importance for timely 
and effective response of malaria control programmes. 
A few studies have been carried out to describe the dis-
tribution of malaria vectors and their role in disease 
transmission in the northern savannah of Cameroon [15, 
18–20]. However, little is known about the behavioural 
response of these vector populations to the wide use 
of LLINs, while evidence show that successful malaria 
elimination strategies require interventions that target 
changing vector behavior [37]. In this study, locally made 

clay pots were tested and used for the first time to moni-
tor outdoor resting mosquitoes, alongside indoor spray 
catches for indoor collection and exit traps for collec-
tion of mosquitoes escaping from houses through the 
windows, in areas with 60–70% LLIN coverage. The used 
OCPs may have underestimated the relative densities of 
outdoor resting mosquitoes, because mosquitoes might 
seek alternative shelters (eaves of huts, canal water pipes, 
undersides of bridges, cracks and holes in the ground, 
granaries, etc.) [38–40]. However, the three collection 
methods yielded consistent samples of mosquitoes for 
subsequent analysis during a four years longitudinal 
survey.

Fourteen malaria vector species were identified in 
study HDs, with three sibling species of the An. gambiae 
complex, i.e. An. arabiensis, An. coluzzii and An. gambiae 
(s.s.) being the major vectors, followed by An. funestus 
(s.l.) and An. rufipes. Species of the An. gambiae com-
plex displayed high HBIs, with increasing relative densi-
ties either indoors, across house openings or outdoors; 
while An. funestus (s.l.) and An. rufipes were mostly 
found outdoors, with lower HBIs. The predominance of 
An. arabiensis in the three study HDs located in semi-
arid areas is consistent with previous observations from 
the same areas [18, 23, 24, 41] and elsewhere in Africa 
[42–45]. In the Umbugwe area (now called Magugu) of 
Northern Tanzania, An. arabiensis has shown a tendency 
to exit from houses after feeding, a behavioral pattern 
normally referred to as exophily [46]. Elsewhere in the 
Kisumu area, Kenya, Highton et  al. [47] reported that 
An. arabiensis showed a tendency to occur outdoors 2.2 
times more frequently than indoors, while Joshi et al. [48] 

Fig. 4 Malaria prevalence among children under 5 years‑old from households using long‑lasting insecticidal nets in the Garoua, Pitoa and Mayo 
Oulo health districts (HD)
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reported 2.8 times. However, the present study found no 
significant difference between the proportions of An. ara-
biensis indoors, in exit traps and outdoors. More interest-
ingly, An. gambiae, An. coluzzii and An. rufipes were also 
largely distributed across the three collection methods; 
the three species were previously reported to develop 
resistance to deltamethrin, the same as An. arabiensis in 
the three study HDs. The synchronous presence of the 
four species across the collection methods may be related 
to the heterogeneity of their populations in terms of fre-
quencies of physiological resistance to deltamethrin. 
Etang et al. [49] previously reported a significant depend-
ence of indoor relative densities of An. arabiensis and An. 
coluzzii on increasing deltamethrin resistance in the Gar-
oua, Pitoa and Mayo Oulo HDs.

Whereas LLINs were expected to progressively reduce 
or even eliminate malaria vectors, with subsequent 
decline of infection rates, the infection rates were higher 
in mosquitoes collected indoors versus outdoors and 
increasing from one year to another, suggesting ongo-
ing malaria transmission regardless of the use of LLINs. 
Moreover, An. funestus (s.l.) was found mostly exophilic 
and fed on animals. In Burkina Faso, a behavioural diver-
gence was observed between highly anthropophagic and 
sympatric chromosomal forms of An. funestus known as 
Folonzo (mosly found indoors) and Kiribina (over-rep-
resented outdoors), suggesting that indoor interventions 
may be less effective against the Kiribina form [50]. Fon-
tenille et  al. [51] also found that although very few An. 
funestus collected indoors in the Manarintsoa area of 
Madagascar fed on animals, 65.0% of the exophilic pop-
ulation had fed on bovid blood. The exophilic and zoo-
philic propensities of An. funestus reported in this study 
may be related to species or chromosomal composition 
of sampled populations. Molecular analysis of An. funes-
tus (s.l.) samples from Garoua collected in 2001–2002 
revealed three species: An. funestus (s.s.), An. leesoni and 
An. rivulorum-like from larval collections, versus 93% 
An. funestus (s.s.) and 7% An. leesoni from indoor collec-
tions [52]. The biology and vectorial capacity of the three 
sibling species are highly contrasting. Anopheles funestus 
(s.s.) is endophilic and anthropophilic, and considered a 
major vector of human malaria, while An. leesoni and An. 
rivulorum-like are primarily zoophilic and exophilic, but 
can also transmit human malaria [2, 53]. Therefore, in 
the present study, indoor samples carrying human blood 
may belong to An. funestus (s.s.) species, while exophilic 
samples carrying animal blood may be of An. leesoni or 
An. rivulorum-like species. Alternatively, the exoph-
ily of An. funestus (s.l.) could also be related to excito-
repellency and deterrence of LLINs, assuming that these 
species were susceptible to deltamethrin. Nevertheless, 
Menze et  al. [54] recently reported multiple insecticide 

resistance in An. funestus (s.s.) from Gounougou, located 
40  km south-east of Garoua on the right bank of the 
Benoue River. Further studies are needed to investigate 
insecticide resistance in the species of the An. funestus 
group from the Garoua, Pitoa and Mayo Oulo HDs.

Among the seven species found infected with the P. 
falciparum parasite, six had already been incriminated 
in the study HDs [15, 18–20]. The seventh species, An. 
longipalpis, for which the only specimen collected was 
found infected with P. falciparum, needs further investi-
gations, since this species is primarily zoophilic [2] and 
no strong conclusions could be drawn due to its small 
sample size. Interestingly, the six major vector species 
fed on human and animals, mainly cattle and sheep, with 
a variety of mixed blood meals. Anopheles funestus and 
An. rufipes obtained a greater proportion of their blood 
meals from animals. This plasticity of the vector trophic 
habits may influence the epidemiology of malaria, lead-
ing to residual transmission after the main endophilic 
and endophagic vectors have been reduced by the inter-
ventions [55, 56]. The ongoing malaria transmission in 
the study HDs was confirmed by high Plasmodium infec-
tion rates in children under five years-old using LLINs 
(30%), varying from one district to another, and among 
the clusters of the same HD. These data are consistent 
with those reported from a nationwide survey conducted 
after the LLIN distribution campaign in 2011 [57]. The 
above-mentioned study revealed 60% LLIN utilization, 
36% malaria prevalence (using RDTs) in children less 
than six years-old sleeping under LLINs and 66% preva-
lence in children not using LLINs. Furthermore, poor 
housing quality, weaknesses in LLIN coverage (more than 
two people/net) and low-level education of the heads of 
the households were identified as the key factors leading 
to continuous malaria transmission despite LLIN inter-
ventions in Cameroon. Such socio-economic and cul-
tural factors are preponderant in most households of the 
study HDs in North Cameroon, especially in Pitoa where 
malaria infection rates had increased (47%), compared 
with 34% recorded in 2002 by Etang et al. [58] in children 
not using ITNs. In addition, the present study underlined 
that high vector densities, availability of alternative hosts 
and deltamethrin resistance, worsened by the plasticity 
in mosquito feeding habits, are key entomological factors 
limiting the effectiveness of LLINs. The combination of 
socio-economic and entomological factors among oth-
ers could therefore explain the increasing malaria infec-
tions in the three study HDs. Treatment of livestock with 
a long-lasting ivermectin formulation, as suggested by 
Chaccour et al. [59] in Kenya, may be trialled as a com-
plementary tool for malaria vector control in addition to 
LLINs in North Cameroon.
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Conclusions
The present study highlights the behavioural plasticity of 
the major malaria vectors and continuous Plasmodium 
infection in the presence of LLINs. The high densities of 
the major vectors, species diversity and ability to feed on 
domestic animal as alternative hosts are key entomologi-
cal factors increasing the complexity of vector control via 
LLINs in North Cameroon. Hence, complementary con-
trol measures are needed to sustain malaria control in 
North Cameroon.
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