191 research outputs found

    Multi-centre, randomised non-inferiority trial of early treatment versus expectant management of patent ductus arteriosus in preterm infants (the BeNeDuctus trial):statistical analysis plan

    Get PDF
    Abstract Background Controversy exists about the optimal management of a patent ductus arteriosus (PDA) in preterm infants. A persistent PDA is associated with neonatal mortality and morbidity, but causality remains unproven. Although both pharmacological and/or surgical treatment are effective in PDA closure, this has not resulted in an improved neonatal outcome. In most preterm infants, a PDA will eventually close spontaneously, hence PDA treatment potentially increases the risk of iatrogenic adverse effects. Therefore, expectant management is gaining interest, even in the absence of convincing evidence to support this strategy. Methods/design The BeNeDuctus trial is a multicentre, randomised, non-inferiority trial assessing early pharmacological treatment (24–72 h postnatal age) with ibuprofen versus expectant management of PDA in preterm infants in Europe. Preterm infants with a gestational age of less than 28 weeks and an echocardiographic-confirmed PDA with a transductal diameter of > 1.5 mm are randomly allocated to early pharmacological treatment with ibuprofen or expectant management after parental informed consent. The primary outcome measure is the composite outcome of mortality, and/or necrotizing enterocolitis Bell stage ≥ IIa, and/or bronchopulmonary dysplasia, all established at a postmenstrual age of 36 weeks. Secondary short-term outcomes are comorbidity and adverse events assessed during hospitalization and long-term neurodevelopmental outcome assessed at a corrected age of 2 years. This statistical analysis plan focusses on the short-term outcome and is written and submitted without knowledge of the data. Trial registration ClinicalTrials.gov NTR5479. Registered on October 19, 2015, with the Dutch Trial Registry, sponsored by the United States National Library of Medicine Clinicaltrials.gov NCT02884219 (registered May 2016) and the European Clinical Trials Database EudraCT 2017-001376-28

    Supplemental oxygen strategies in infants with bronchopulmonary dysplasia after the neonatal intensive care unit period:study protocol for a randomised controlled trial (SOS BPD study)

    Get PDF
    Introduction Supplemental oxygen is the most important treatment for preterm born infants with established bronchopulmonary dysplasia (BPD). However, it is unknown what oxygen saturation levels are optimal to improve outcomes in infants with established BPD from 36 weeks postmenstrual age (PMA) onwards. The aim of this study is to compare the use of a higher oxygen saturation limit (≥95%) to a lower oxygen saturation limit (≥90%) after 36 weeks PMA in infants diagnosed with moderate or severe BPD. Methods and analysis This non-blinded, multicentre, randomised controlled trial will recruit 198 preterm born infants with moderate or severe BPD between 36 and 38 weeks PMA. Infants will be randomised to either a lower oxygen saturation limit of 95% or to a lower limit of 90%; supplemental oxygen and/or respiratory support will be weaned based on the assigned lower oxygen saturation limit. Adherence to the oxygen saturation limit will be assessed by extracting oxygen saturation profiles from pulse oximeters regularly, until respiratory support is stopped. The primary outcome is the weight SD score at 6 months of corrected age. Secondary outcomes include anthropometrics collected at 6 and 12 months of corrected age, rehospitalisations, respiratory complaints, infant stress, parental quality of life and cost-effectiveness. Ethics and dissemination Ethical approval for the trial was obtained from the Medical Ethics Review Committee of the Erasmus University Medical Centre, Rotterdam, the Netherlands (MEC-2018-1515). Local approval for conducting the trial in the participating hospitals has been or will be obtained from the local institutional review boards. Informed consent will be obtained from the parents or legal guardians of all study participants

    TMEM106B a Novel Risk Factor for Frontotemporal Lobar Degeneration

    Get PDF
    Recently, the first genome-wide association (GWA) study in frontotemporal lobar degeneration (FTLD) identified common genetic variability at the TMEM106B gene on chromosome 7p21.3 as a potential important risk-modifying factor for FTLD with pathologic inclusions of TAR DNA-binding protein (FTLD-TDP), the most common pathological subtype in FTLD. To gather additional evidence for the implication of TMEM106B in FTLD risk, multiple replication studies in geographically distinct populations were set up. In this review, we revise all recent replication and follow-up studies of the FTLD-TDP GWA study and summarize the growing body of evidence that establish TMEM106B as a bona fide risk factor for FTLD. With the TMEM106B gene, a new player has been identified in the pathogenic cascade of FTLD which could hold important implications for the future development of disease-modifying therapies

    A locus at 19q13.31 significantly reduces the <em>ApoE</em> ε4 risk for Alzheimer\u27s Disease in African Ancestry

    Get PDF
    Copyright: \ua9 2022 Rajabli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. African descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (β = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (β = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (β = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the “protective” direction but failing to pass a 0.05 significance threshold (β = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention

    Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia

    Get PDF
    Objective Morphine is a commonly used drug in encephalopathic neonates treated with therapeutic hypothermia after perinatal asphyxia. Pharmacokinetics and optimal dosing of morphine in this population are largely unknown. The objective of this study was to describe pharmacokinetics of morphine and its metabolites morphine-3-glucuronide and morphine-6-glucuronide in encephalopathic neonates treated with therapeutic hypothermia and to develop pharmacokinetics based dosing guidelines for this population. Study design Term and near-term encephalopathic neonates treated with therapeutic hypothermia and receiving morphine were included in two multicenter cohort studies between 2008-2010 (SHIVER) and 2010-2014 (PharmaCool). Data were collected during hypothermia and rewarming, including blood samples for quantification of morphine and its metabolites. Parental informed consent was obtained for all participants. Results 244 patients (GA mean (sd) 39.8 (1.6) weeks, BW mean (sd) 3,428 (613) g, male 61.5%) were included. Morphine clearance was reduced under hypothermia (33.5 degrees C) by 6.89%/degrees C (95% CI 5.37%/degrees C-8.41%/degrees C, p<0.001) and metabolite clearance by 4.91%/degrees C (95% CI 3.53%/degrees C-6.22%/degrees C, p<0.001) compared to normothermia (36.5 degrees C). Simulations showed that a loading dose of 50 mu g/kg followed by continuous infusion of 5 mu g/kg/h resulted in morphine plasma concentrations in the desired range (between 10 and 40 mu g/L) during hypothermia. Conclusions Clearance of morphine and its metabolites in neonates is affected by therapeutic hypothermia. The regimen suggested by the simulations will be sufficient in the majority of patients. However, due to the large interpatient variability a higher dose might be necessary in individual patients to achieve the desired effect

    Phenobarbital, midazolam pharmacokinetics, effectiveness, and drug-drug interaction in asphyxiated neonates undergoing therapeutic hypothermia

    Get PDF
    Background: Phenobarbital and midazolam are commonly used drugs in (near-)term neonates treated with therapeutic hypothermia for hypoxic-ischaemic encephalopathy, for sedation, and/or as anti-epileptic drug. Phenobarbital is an inducer of cytochrome P450 (CYP) 3A, while midazolam is a CYP3A substrate. Therefore, co-treatment with phenobarbital might impact midazolam clearance. Objectives: To assess pharmacokinetics and clinical anti-epileptic effectiveness of phenobarbital and midazolam in asphyxiated neonates and to develop dosing guidelines. Methods: Data were collected in the prospective multicentre PharmaCool study. In the present study, neonates treated with therapeutic hypothermia and receiving midazolam and/or phenobarbital were included. Plasma concentrations of phenobarbital and midazolam including its metabolites were determined in blood samples drawn on days 2–5 after birth. Pharmacokinetic analyses were performed using non-linear mixed effects modelling; clinical effectiveness was defined as no use of additional anti-epileptic drugs. Results: Data were available from 113 (phenobarbital) and 118 (midazolam) neonates; 68 were treated with both medications. Only clearance of 1-hydroxy midazolam was influenced by hypothermia. Phenobarbital co-administration increased midazolam clearance by a factor 2.3 (95% CI 1.9–2.9, p < 0.05). Anticonvulsant effectiveness was 65.5% for phenobarbital and 37.1% for add-on midazolam. Conclusions: Therapeutic hypothermia does not influence clearance of phenobarbital or midazolam in (near-)term neonates with hypoxic-ischaemic encephalopathy. A phenobarbital dose of 30 mg/kg is advised to reach therapeutic concentrations. Phenobarbital co-administration significantly increased midazolam clearance. Should phenobarbital be substituted by non-CYP3A inducers as first-line anticonvulsant, a 50% lower midazolam maintenance dose might be appropriate to avoid excessive exposure during the first days after birth. © 2019 The Author(s) Published by S. Karger AG, Base

    Systemic Hydrocortisone To Prevent Bronchopulmonary Dysplasia in preterm infants (the SToP-BPD study): Statistical analysis plan

    Get PDF
    Background: Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth with short-term and long-term adverse consequences. Although the glucocorticoid dexamethasone has been proven to be beneficial for the prevention of BPD, there are concerns about an increased risk of adverse neurodevelopmental outcome. Hydrocortisone has been suggested as an alternative therapy. The aim of the Systemic Hydrocortisone To Prevent Bronchopulmonary Dysplasia in preterm infants (SToP-BPD) trial is to assess the efficacy and safety of postnatal hydrocortisone administration for the reduction of death or BPD in ventilator-dependent preterm infants. Methods/design: The SToP-BPD study is a multicentre, double-blind, placebo-controlled hydrocortisone trial in preterm infants at risk for BPD. After parental informed consent is obtained, ventilator-dependent infants are randomly allocated to hydrocortisone or placebo treatment during a 22-day period. The primary outcome measure is the composite outcome of death or BPD at 36 weeks postmenstrual age. Secondary outcomes are short-term effects on pulmonary condition and long-term neurodevelopmental sequelae assessed at 2 years corrected age. Complications of treatment, other serious adverse events and suspected unexpected serious adverse reactions are reported as safety outcomes. This pre-specified statistical analysis plan was written and submitted without knowledge of the unblinded data

    Absence of C9ORF72 expanded or intermediate repeats in autopsy-confirmed Parkinson's disease

    Get PDF
    BACKGROUND: We have reported that intermediate repeat lengths of the C9ORF72 repeat are a risk factor for Parkinson's disease (PD) in a clinically diagnosed data set. Because 10% to 25% of clinically diagnosed PD have different diagnoses upon autopsy, we hypothesized that this may reflect phenotypic heterogeneity or concomitant pathology of other neurodegenerative disorders. METHODS: We screened 488 autopsy-confirmed PD cases for expansion haplotype tag rs3849942T. In 196 identified haplotype carriers, the C9ORF72 repeat was genotyped using the repeat-primed polymerase chain reaction assay. RESULTS: No larger (intermediate or expanded) repeats were found in these autopsy-confirmed PD samples. This absence of larger repeats is significantly different from the frequency in clinically diagnosed datasets (P = 0.002). CONCLUSIONS: Our results suggest that expanded or intermediate C9ORF72 repeats in clinically diagnosed PD or parkinsonism might be an indication of heterogeneity in clinically diagnosed PD cases. Further studies are needed to elucidate the potential contribution of the C9ORF72 repeat to autopsy-confirmed PD

    The bilirubin albumin ratio in the management of hyperbilirubinemia in preterm infants to improve neurodevelopmental outcome: A randomized controlled trial - BARTrial

    Get PDF
    Background and Objective: High bilirubin/albumin (B/A) ratios increase the risk of bilirubin neurotoxicity. The B/A ratio may be a valuable measure, in addition to the total serum bilirubin (TSB), in the management of hyperbilirubinemia. We aimed to assess whether the additional use of B/A ratios in the management of hyperbilirubinemia in preterm infants improved neurodevelopmental outcome. Methods: In a prospective, randomized controlled trial, 615 preterm infants of 32 weeks' gestation or less were randomly assigned to treatment based on either B/A ratio and TSB thresholds (consensus-based), whichever threshold was crossed first, or on the TSB thresholds only. The primary outcome was neurodevelopment at 18 to 24 months' corrected age as assessed with the Bayley Scales of Infant Development III by investigators unaware of treatment allocation. Secondary outcomes included complications of preterm birth and death. Results: Composite motor (100±13 vs. 101±12) and cognitive (101±12 vs. 101±11) scores did not differ between the B/A ratio and TSB groups. Demographic characteristics, maximal TSB levels, B/A ratios, and other secondary outcomes were similar. The rates of death and/or severe neurodevelopmental impairment for th

    Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity
    • …
    corecore