4 research outputs found

    A depletable pool of adenosine in area CA1 of the rat hippocampus

    Get PDF
    Adenosine plays a major modulatory and neuroprotective role in the mammalian CNS. During cerebral metabolic stress, such as hypoxia or ischemia, the increase in extracellular adenosine inhibits excitatory synaptic transmission onto vulnerable neurons via presynaptic adenosine A1 receptors, thereby reducing the activation of postsynaptic glutamate receptors. Using a combination of extracellular and whole-cell recordings in the CA1 region of hippocampal slices from 12- to 24-d-old rats, we have found that this protective depression of synaptic transmission weakens with repeated exposure to hypoxia, thereby allowing potentially damaging excitation to both persist for longer during oxygen deprivation and recover more rapidly on reoxygenation. This phenomenon is unlikely to involve A1 receptor desensitization or impaired nucleoside transport. Instead, by using the selective A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine and a novel adenosine sensor, we demonstrate that adenosine production is reduced with repeated episodes of hypoxia. Furthermore, this adenosine depletion can be reversed at least partially either by the application of exogenous adenosine, but not by a stable A1 agonist, N6-cyclopentyladenosine, or by endogenous means by prolonged (2 hr) recovery between hypoxic episodes. Given the vital neuroprotective role of adenosine, these findings suggest that depletion of adenosine may underlie the increased neuronal vulnerability to repetitive or secondary hypoxia/ischemia in cerebrovascular disease and head injury

    Putative depolarisation-induced retrograde signalling accelerates the repeated hypoxic depression of excitatory synaptic transmission in area CA1 of rat hippocampus via group I metabotropic glutamate receptors

    No full text
    Excitatory synaptic transmission in area CA1 of the mammalian hippocampus is rapidly depressed during hypoxia. The depression is largely attributable to an increase in extracellular adenosine and activation of inhibitory adenosine A(1) receptors on presynaptic glutamatergic terminals. However, sequential exposure to hypoxia results in a slower subsequent hypoxic depression of excitatory synaptic transmission, a phenomenon we have previously ascribed to a reduction in the release of extracellular adenosine. In the present study we show that this delayed depression of excitatory postsynaptic currents (EPSCs) to repeated hypoxia can be reversed by a period of postsynaptic depolarisation delivered to an individual CA1 neuron, under whole-cell voltage clamp, between two periods of hypoxia. The depolarisation-induced acceleration of the hypoxic depression of the EPSC is dependent upon postsynaptic Ca2+ influx, the activation of PKC and is blocked by intracellular application of GDP-beta-S and N-ethylmaleimide (NEM), inhibitors of membrane fusion events. In addition, the acceleration of the hypoxic depression of the EPSC was prevented by the GI mGluR antagonist AIDA, but not by the CBI cannabinoid receptor antagonist AM251. Our results suggest a process initiated in the postsynaptic cell that can influence glutamate release during subsequent metabolic stress. This may reflect a novel neuroprotective strategy potentially involving retrograde release of adenosine and/or glutamate. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved

    Hypoxia-inducible factor signaling mechanisms in the central nervous system

    No full text
    In the CNS neurons are highly sensitive to the availability of oxygen. In conditions where oxygen availability is decreased neuronal function can be altered, leading to injury and cell death. Hypoxia has been implicated in a number of central nervous system pathologies including stroke, head trauma, and neurodegenerative diseases. Depending on the duration and severity of the oxygen deprivation, cellular oxygen-sensor responses activate a variety of short- and long-term energy saving and cellular protection mechanisms.  Failure of synaptic transmission can be observed within minutes following this hypoxia. The acute affects of hypoxia on synaptic transmission are primarily mediated by altering ion fluxes across membranes, presynaptic effects of adenosine and other actions at glutamatergic receptors. A more long-term feature of the response of neurons to hypoxia is the activation of transcription factors such as hypoxia inducible factor. The activation of hypoxia inducible factor is governed by a family of dioxygenases called hypoxia inducible factor prolyl 4 hydroxylases (PHDs). Under hypoxic conditions, PHD activity is inhibited, thereby allowing hypoxia inducible factor to accumulate and translocate to the nucleus, where it binds to the hypoxia-responsive element sequences of target gene promoters. Inhibition of PHD activity stabilizes hypoxia inducible factor and other proteins thus acting as a neuroprotective agent. This review will focus on the response of neuronal cells to hypoxia inducible factor and its targets, including the prolyl hydroxylases. We also present evidence for acute effects of PHD inhibition on synaptic transmission and plasticity in the hippocampus.AM
    corecore