28 research outputs found

    Potensi Pemanfaatan Biochar untuk Rehabilitasi Lahan Kering di Indonesia

    Get PDF
    Abstrak. Pemanfaatan biochar merupakan salah satu upaya pengelolaan limbah pertanian yang prospektif untuk mendorong optimalisasi lahan-lahan suboptimal dan lahan terdegradasi. Tulisan ini bertujuan untuk memberikan informasi tentang potensi biochar di bidang pertanian khususnya dalam upaya merehabilitasi lahan-lahan suboptimal di Indonesia. Di Indonesia, berbagai sumber bahan baku biochar berupa limbah pertanian tersedia cukup banyak yang diperkirakan mencapai 10,7 juta t th-1, di antaranya berupa sekam padi, kulit buah kakao, tempurung kelapa, tempurung kelapa sawit, tongkol jagung. Kualitas biochar yang diproduksi sangat tergantung pada jenis bahan baku, alat pembakaran, suhu pembakaran, dan lamanya pembakaran. Aplikasi biochar pada lahan pertanian berfungsi sebagai pembenah tanah yang mampu memperbaiki sifat kimia tanah (pH, kapasitas tukar kation, N-total, P-tersedia dan Aldd), sifat fisik tanah (Bulk density, porositas dan kemampuan tanah memegang air). Perbaikan kualitas sifat kimia dan fisik tanah tersebut berdampak pada ketersediaan hara dan air melalui kemampuan biochar meretensi hara dan air. Pada akhirnya, penambahan biochar berimplikasi pada peningkatan produktivitas tanaman pangan. Ke depan, diharapkan dengan aplikasi biochar akan semakin luas lahan-lahan suboptimal dan lahan terdegradasi yang dapat dipulihkan dan ditingkatkan produktivitasnya.Abstract. Biochar utilization is prospective land management to encourage optimization of sub-optimal land. The objective of this paper is to inform of potency of biochar in agricultural aspect especially for rehabilitating of degraded land in Indonesia. In Indonesia, the various sources of raw materials such as agricultural wastes available biochar is quite large reaching 10.7 million t / year, such as rice husks, cacao shell, coconut shell, oil palm shell, and corn cob, etc. Quality of biochar produced depends on the type of raw materials, equipment used, combustion temperature, and duration of combustion. Biochar application on agricultural land serves as soil amendment that can improve soil chemical properties (pH, cation exchange capacity, total-N, available P and Alexch), soil physical properties (bulk density, porosity and water holding capacity). Improvement soil physical and chemical properties impacted on the nutrient availability and water availability through nutrient and water retention. Finally the addition of biochar have been impacted for increasing crop productivity. It is expected that addition of biochar will recover widespread of suboptimal land and then land productivity can be increased

    Changes of Soil Aggregate on Degraded Jasinga Ultisols by Soil Tillage and Organic Matter Practices

    Full text link
    Soil aggregate is soil characteristics which is sensitive to change due to soil tillage. Organic matter practices and soil tillage difference have an important role in determining the quality and quantity of soil aggregate. The objective of this research is to study the quality changes of soil aggregation on Ultisols Jasinga degraded by various soil tillage and organic matter practices. This research was carried out at Jasinga Village, Jasinga Sub District, Bogor District in 2003 planting season (PS). The randomized block design with three replications was used. The Main plot was artificial desurfacing which consisted of three treatments, i.e: non-artificial desurfacing, 5 cm depth of artificial desurfacing, and10 cm depth of artificial desurfacing, whereas sub plot treatments were soil tillage and soil rehabilitation with Mucuna sp. (tillage+Mucuna sp.), no soil tillage and without rehabilitation (no tillage without Mucuna sp.), soil tillage without rehabilitation (tillage without Mucuna sp.), and no soil tillage with rehabilitation (no tillage+Mucuna sp.). The result of this research showed that periodic application of fresh organic matters was able to maintain the quality of macroaggregate on eroded soil (0.36-15.47 cm). Minimum soil tillage application and continuos organic matter practices (>21 t ha-1 year-1) are soil conservation technique that has been able to maintain soil aggregate, even without rehabilitation with Mucuna sp. Various organic matters (Mucuna sp., plant waste, and flemingia) are needed to be applied periodically to maintain the quality of soil aggregate

    GREENHOUSE GAS EMISSIONS AND LAND USE ISSUES RELATED TO THE USE OF BIOENERGY IN INDONESIA

    Get PDF
    Biofuel use is intended to address the ever-increasing demand for and scarcer supply of fossil fuels. The recent Indonesia government policy of imposing 10% mixing of biodiesel into petroleum-based diesel affirms the more important biofuel role in the near future. Palm oil, methane from palm oil mill effluent (POME) and animal wastes are the most prospective agricultural-based biofuels. The production and use of palm oil is interlinked with land use and land use change (LULUC), while the use of methane from POME and animal wastes can contribute in reducing emissions. The current European Union (EU) and the potential United States (US) markets are imposing biodiesels’ green house gas (GHG) emission reduction standards (ERS) of 35% and 20%, respectively relative to the emissions of petroleum-based diesel based on using the lifecycle analysis (LCA). EU market will increase the ERS to 50% starting1 January 2017, which make it more challenging to reach. Despite controversies in the methods and assumptions of GHG emission reduction assessment using LCA, the probability of passing ERS increases as the development of oil palm plantation avoid as much as possible the use of peatland and natural forests. At present, there is no national ERS for bioenergy, but Indonesia should be cautious with the rapid expansion of oil palm plantation on existing agricultural lands, as it threatens food security. Focusing more on increasing palm oil yield, reducing pressure on existing agricultural lands for oil palm expansion and prioritizing the development on low carbon stock lands such as grass- and shrublands on mineral soils will be the way forward in addressing land scarcity, food security, GHG emissions and other environmental problems. Other forms of bioenergy source, such as biochar, promise to a lesser extent GHGemission reduction, and its versatility also requires consideration of its use as a soil ameliorant

    Greenhouse Gas Emissions and Land Use Issues Related to the Use of Bioenergy in Indonesia

    Full text link
    Biofuel use is intended to address the ever-increasing demand for and scarcer supply of fossil fuels. The recent Indonesia government policy of imposing 10% mixing of biodiesel into petroleum-based diesel affirms the more important biofuel role in the near future. Palm oil, methane from palm oil mill effluent (POME) and animal wastes are the most prospective agricultural-based biofuels. The production and use of palm oil is interlinked with land use and land use change (LULUC), while the use of methane from POME and animal wastes can contribute in reducing emissions. The current European Union (EU) and the potential United States (US) markets are imposing biodiesels' green house gas (GHG) emission reduction standards (ERS) of 35% and 20%, respectively relative to the emissions of petroleum-based diesel based on using the lifecycle analysis (LCA). EU market will increase the ERS to 50% starting1 January 2017, which make it more challenging to reach. Despite controversies in the methods and assumptions of GHG emission reduction assessment using LCA, the probability of passing ERS increases as the development of oil palm plantation avoid as much as possible the use of peatland and natural forests. At present, there is no national ERS for bioenergy, but Indonesia should be cautious with the rapid expansion of oil palm plantation on existing agricultural lands, as it threatens food security. Focusing more on increasing palm oil yield, reducing pressure on existing agricultural lands for oil palm expansion and prioritizing the development on low carbon stock lands such as grass- and shrublands on mineral soils will be the way forward in addressing land scarcity, food security, GHG emissions and other environmental problems. Other forms of bioenergy source, such as biochar, promise to a lesser extent GHGemission reduction, and its versatility also requires consideration of its use as a soil ameliorant

    The Use of Mineral and Organic Soil Conditioner to Improve Soil Quality of Typic Kanhapludults Tamanbogo, Lampung

    Full text link
    As soil conditioner, there are many functions of organic matter that would not be replaced by mineral material. Therefore, mineral soil conditioner is better focused on increasing quality of organic soil conditioner. The objective of the research was to obtain the effectiveness of soil conditioner formula (organic matter and zeolit) and its application technique (dose and phase application) in improving soil quality. The research was conducted at KP Tamanbogo, Lampung for three seasons (2006/2007). The experiment employed a split plot design with three reflications. Application techniques of soil conditioner (dose and phase aplication) as main plots and three types formula of soil conditioner as sub plots. Corn was used as test crop. Parameters observed were plant growth and production, and changes in soil properties. The results showed that soil conditioner that applied on Typic kanhapludults could significantly increased corn growth and yield. Soil conditioner with higher organic matter proportion has better effect on corn growth and yield as well as on physical soil properties, which indicated by soil permeability and aggregate stability. The addition of 20% of zeolit in soil conditioner formula increased soil microorganism activities, but the additional up to 30% decrease microorganism activities. The changes of organic matter and zeolit proportion in soil conditioner has significantly effect on soil pH and N content, but has no significantly effect on P, K content, and CEC. Compared to innitial soil condition, application of soil conditioner could increase CEC from <4 cmolc kg-1 to 5.85 cmolc kg-1 respectively. Soil conditioner was better to be applied periodically but must be done every season. For degraded soil such as at KP. Tamanbogo, soil conditioner was applied with 10 t ha-1 dose for innitial rehabilitation process, hereinafter with 5 t ha-1 annual crop season dose

    PEMANFAATAN BIOCHAR KULIT BUAH KAKAO DAN SEKAM PADI UNTUK MENINGKATKAN PRODUKTIVITAS PADI SAWAH DI ULTISOL LAMPUNG

    Get PDF
    Utilization of Biochar of Cocoa Shell and Rice Husk to Increase Rice Productivity in Ultisol Lampung. Biochar application as soil amendment is technology for soil and crop productivity improvement in acid soil. The main problem of acid soil including in paddy field is high concentration of Al3+ that inhibit crops growth causing low crop production. The objective of this study was to evaluate the effects of cocoa shell and rice husk biochar on paddyfield productivity and soil chemical properties. The study was conducted at Agricultural Research Station of Tamanbogo, East Lampung on June-September 2012 (planting season 1), January-April 2013 (planting season 2) and December 2013-March 2014 (planting season 3). The experimental design was split plot design, which the main plotswere two types of biochar (cacao shell and rice husk), the sub plots were biochar rates 0.5 t/ha (control), 5 t/ha and 15 t/ha with five replications. The parameters measured were paddy growth, yield and soil chemical properties (soil pH,C organic, N total, available P, K total, and Al3+ ). The result showed that biochar could affect weight of rice straw andrice yield at the second and third planting season, while biochar rates could affect crop growth and yield of rice at three planting. The effect of cacao shell and rice husk biochar application with the rate of 15 t/ha could up to three planting seasons without any biochar addition in following two consecutives year, whereas addition biochar 5 t/ha wasless effective. The cacao shell biochar was more effective in increasing crop growth and yield than rice husk biochar,as seen on dry grain rice yield, i.e. 3.58 t/ha (PS1) and 5.06 t/ha (PS III). During two planting seasons, both biochar at the rate of 15 t/ha were sufficient to improve soil chemical properties. Cacao shell biochar with the rate of 15 t/ha had better effect in improving soil chemical properties significantly in term of soil pH, available P, and total K content and decreasing aluminum content than rice husk biochar especially at second planting season. lowland, biochar, rice, Ultisol, LampungABSTRAKAplikasi biochar sebagai pembenah tanah merupakan salah satu teknologi untuk memperbaiki produktivitas tanah dan tanaman pada lahan masam. Permasalahan utama pada lahan masam adalah tingginya konsentrasi Fe3+ yang dapat menghambat pertumbuhan tanaman sehingga menyebabkan rendahnya produksi. Tujuan penelitian ini adalah untuk mempelajari pengaruh pemberian biochar kulit buah kakao dan sekam padi serta takarannya terhadap peningkatan sifat kimia tanah dan produktivitas padi sawah di Ultisol Lampung. Penelitian dilaksanakan pada lahan sawah di Kebun Percobaan Taman Bogo, Lampung selama tiga musim tanam yaitu bulan Juni-September 2012 (musim tanam pertama), bulan Januari-April 2013 (musim tanam kedua) dan Desember 2013 - Maret 2014 (musim tanam ketiga). Percobaan disusun dalam rancangan kelompok petak terpisah, sebagai petak utama terdiri dari biochar kulit buah kakao dan biochar sekam padi, sedangkan sebagai anak petak adalah takaran biochar yaitu tanpa biochar (kontrol 0 t/ha), 5 t/ha dan 15 t/ha, dengan 5 kali ulangan. Parameter yang diamati meliputi pertumbuhan dan hasil padi, sifat kimia tanah (pH, C-organik, N-total, P-tersedia, K-total dan Al3+ ). Hasil penelitian menunjukkan bahwa  jenis biochar hanya berpengaruh nyata terhadap berat jerami kering dan hasil gabah pada musim tanaman kedua dan ketiga, sedangkan takaran biochar berpengaruh nyata terhadap pertumbuhan dan hasil padi pada ke tiga musim tanam. Pengaruh pemberian biochar kulit buah kakao dan sekam padi 15 t/ha mampu bertahan sampai tiga musim tanam dilihat dari pertumbuhan dan hasil padi sawah, sedangkan pemberian biochar 5 t/ha bertahan satu musim saja. Efektivitas biochar kulit buah kakao dalam mendukung pertumbuhan dan hasil tanaman lebih tinggi dibandingkan sekam padi terlihat dari hasil gabah kering panen sebesar 3,58 t/ha (MT II) dan 5,06 t/ha (MT III). Selama dua musim tanam pemberian biochar kulit buah kakao sebanyak 15 t/ha juga mampu meningkatkan pH tanah, P tersedia, dan kandungan K tetapi menurunkan kandungan aluminium melebihi biochar sekam padi terutama pada musim tanam kedua.produktivitas, padi sawah, biochar, Ultiso

    Pembenah Tanah untuk Meningkatkan Produktivitas Lahan Pertanian

    Get PDF
    Abstrak. Pembenah tanah (soil conditioner) dapat digunakan untuk mempercepat pemulihan kualitas tanah. Tulisan ini menguraikan prinsip pemanfaatan pembenah tanah, jenis dan klasifikasi pembenah tanah, fungsi utama dan efek pembenah tanah terhadap kualitas tanah dan produktivitas tanaman, pengembangan pembenah tanah untuk pemulihan lahan pertanian, serta peluang dan kendala pengembangan pembenah tanah. Penggunaan pembenah tanah utamanya ditujukan untuk memperbaiki kualitas fisik, kimia, dan/atau biologi tanah, sehingga produktivitas tanah menjadi optimum. Pembenah tanah ada yang bersifat alami maupun buatan (sintetis). Berdasarkan senyawa atau unsur pembentuk utamanya, pembenah tanah bisa dibedakan sebagai pembenah tanah organik, hayati, dan mineral. Penggunaan pembenah tanah yang bersumber dari bahan organik sebaiknya menjadi prioritas utama, selain terbukti efektif dalam memperbaiki kualitas tanah dan produktivitas lahan, juga bersifat terbarukan, insitu, dan relatif murah, serta bisa mendukung konservasi karbon dalam tanah. Kelemahannya adalah dibutuhkan dalam dosis relatif tinggi. Beberapa pembenah mineral juga efektif dalam meningkatkan kualitas tanah, namun tetap harus disertai dengan penggunaan pembenah tanah organik. Penggunaan pembenah tanah sintetik perlu diuji terlebih dahulu dari segi dampak negatifnya terhadap lingkungan, selain pertimbangan harga yang umumnya relatif mahal, meski dosis yang digunakan relatif rendah.Abstract. Soil conditioner can be used to improve the recovery of soil quality. This paper mainly discuss on the use of soil conditioner, type and classification, function and its effect on soil quality and crop productivity, as well as the potency and challenge of using soil conditioner for recovery of the degraded agricultural land. The main role of soil conditioner is to improve soil physical, chemical and biological conditions and to provide optimum condition for soil productivity. There are natural and synthetic soil conditioners. Based on its component, they can be grouped as organic, biologic and mineral soil conditioner. The use of organic soil conditioner is strongly recommended as it proven very effective in improving soil quality and land productivity. Other benefits in using organic soil conditioner are their properties such as renewable, available in situ, and relatively less expensive. It also can support the conservation of carbon in the soil, but has the weakness associated with the high application rate. Some mineral soil conditioner is also effective in improving soil quality unless it’s combined organic soil conditioner. The use of synthetic soil conditioner should be evaluated for its negative impact on the environment prior to application and for its relatively expensive, although it is used at relatively low doses
    corecore