12 research outputs found

    A C126R de novo Mutation in CYBB Leads to X-linked Chronic Granulomatous Disease With Recurrent Pneumonia and BCGitis

    Get PDF
    Chronic granulomatous disease (CGD) is an innate immune deficiency of phagocytic cells caused by mutations that affect components of the NADPH oxidase system, with resulting impairment in reactive oxygen species production. Patients with CGD are susceptible to recurrent infections and hyperinflammatory responses. Mutations in CYBB lead to the X-linked form of CGD and are responsible for ~ 70% of cases. In this study, we report the case of a 2.5-year-old male patient with recurrent pneumonia and Bacillus Calmette-Guérin infection (BCGitis). As his first clinical manifestation, he presented with bullous impetigo at 18 days of age, which was followed by recurrent pneumonia and regional BCGitis. Genetic analysis revealed a de novo mutation in exon 5 of the CYBB gene: a single-nucleotide substitution, c.376T > C, leading to a C126R change

    Clinical spectrum and molecular genetic defects in patients with chronic granulomatous disease.

    No full text
    A doença granulomatosa crônica é uma imunodeficiência primária dos fagócitos causada por mutações no sistema NADPH oxidase resultando em burst oxidativo ausente ou reduzido. Nosso objetivo foi realizar uma análise genética molecular do complexo NADPH oxidase em pacientes com diagnóstico clínico de DGC. Cinqüenta e quatro pacientes com diagnóstico clínico sugestivo da DGC foram incluídos em nosso estudo. As populações de neutrófilos e monócitos foram avaliadas pela capacidade de produzir peróxido de hidrogênio por meio do teste de DHR. Dezoito pacientes apresentaram defeito no burst oxidativo, enquanto trinta e oito apresentaram produção de peróxido normal. O DNA genômico dos dezoito pacientes com burst oxidativo diminuído foi extraído, os genes da cadeia beta polipeptídica do complexo citocromo b e o factor citoplasmático de neutrófilos, foram sequenciados. Sete pacientes apresentaram diferentes mutações, tanto no gene CYBB como no NCF1. Concluímos que a combinação do teste de DHR e o sequenciamento direto são métodos eficazes para o diagnóstico genético da DGC.Chronic granulomatous disease is a primary immunodeficiency caused by mutations in the phagocyte NADPH oxidase system resulting in absent or reduced oxidative burst. Our goal was to perform a molecular genetic analysis of complex NADPH oxidase in patients with clinical diagnosis of CGD. Fifty-four patients with a clinical diagnosis of CGD were included in our study. The populations of neutrophils and monocytes were evaluated for the ability to produce hydrogen peroxide through the DHR test. Eighteen patients had a defect in the oxidative burst, while thirty-eight had normal peroxide production. Genomic DNA of the eighteen patients with decreased oxidative burst was extracted, the genes the chain complex cytochrome beta polypeptide and the neutrophil cytoplasmic factor, were sequenced. Seven patients had different mutations, both in the CYBB gene as in NCF1. We conclude that the combination of direct sequencing and DHR test methods are effective for the genetic diagnosis of CGD

    Clinical and Genetic Characterization of Brazilian Patients with Chronic Granulomatous Disease and Mendelian Susceptibility to Mycobacterial Disease

    No full text
    Dentre pacientes com imunodeficiências primárias, existem aqueles com defeitos de fagócitos e outros componentes da imunidade inata. A doença granulomatosa crônica (DGC) é uma imunodeficiência primária (IDP) causada por mutações em um dos componentes protéicos, gp91-phox, p22-phox, p47-phox, p67-phox e p40-phox, da nicotinamida adenina dinucleotídeo fosfato (NADPH) dos fagócitos. Pacientes com DGC apresentam maior susceptibilidade a infecções, assim como hiperinflamação e reação adversa à vacinas como à do Bacilo Calmette-Guérin (BCG), como consequência da atividade microbicida defeituosa dos fagócitos. Por outro lado, a susceptibilidade mendeliana a micobactérias (MSMD) é uma condição que predispõe os pacientes a infecções pelo gênero Mycobacterium sp, levando a infecções graves e por vezes à morte. O objetivo deste trabalho foi realizar o diagnóstico clínico e a análise genético-molecular de pacientes brasileiros com DGC e MSMD. A explosão respiratória de granulócitos foi avaliada pelo ensaio de dihidrorodamina (DHR). A dosagem de citocinas do eixo IL-12/IFN-&#947 foi realizada mediante o ensaio de ELISA após estimulo com lisado de micobactérias (LM), proteína purifica (PPD) e BCG. O DNA genômico dos pacientes foi extraído, amplificado e sequenciado pelo método de Sanger e seqüenciamento completo de exoma. Durante o período de 2014-2018, 181 pacientes com histórico clínico sugestivo de DGC e 75 pacientes com diagnóstico sugestivo de MSMD foram encaminhados ao nosso laboratório. Após avaliação clínica e bioquímica dos pacientes, 23 deles foram diagnosticadas com DGC e 16 com MSMD. A análise genético-molecular permitiu identificar mutações em 14 pacientes com DGC, nove deles com DGC ligada ao cromossomo X (DGC-X) e 5 com DGC autossômica recessiva (DGC-AR). Identificamos mutações em 5 pacientes com MSMD, sendo três delas no receptor de IL-12 e duas no receptor da IL-17.Among patients with primary immunodeficiencies, there are those with defects in phagocytes and other components of the innate immunity. Chronic granulomatous disease (CGD) is a primary immunodeficiency (PID) caused by mutations in one of the protein components, gp91-phox, p22-phox, p47-phox, p67-phox and p40-phox of the Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase of phagocytes. Patients with CDG are susceptible to infections, as well as hyperinflammation and adverse reactions to vaccines such as Bacilo Calmette-Guérin (BCG) as a consequence of defective phagocytes microbicidal activity. On the other hand, Mendelian susceptibility to mycobacterial diseases (MSMD) is a condition that predisposes patients to infections by the genus Mycobacterium sp , leading to serious infections and sometimes death. The main goal of this study was to perform the clinical diagnosis and genetic-molecular analysis of Brazilian patients with CDG and MSMD. The respiratory burst of granulocytes was evaluated by the dihydrorhodamine (DHR) assay. Cytokine dosing of IL-12 / IFN-&#947 axis was performed by the ELISA assay after stimulation with mycobacterium lysate (LM), purified protein (PPD) and BCG. Patients genomic DNA was extracted, amplified and sequenced by the Sanger method and whole exome sequencing. During the period of 2014 to 2018, 181 patients with a clinical history suggestive of CDG and 75 patients with a diagnosis suggestive of MSMD were referred to our laboratory. After clinical and biochemical evaluation, 23 of them were diagnosed with CDG and 16 with MSMD. Genetic-molecular analysis allowed the identification of mutations in 14 patients with CDG, of those 9 had X-linked DGC (X-CGD) and 5 had autosomal recessive CGD (AR-CGD). Mutations were identified in 5 MSMD patients, three in the IL-12 receptor and two in the IL-17 receptor

    Clinical And Genotypic Spectrum Of Chronic Granulomatous Disease In 71 Latin American Patients: First Report From The Lasid Registry

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Aim. We analyzed data from 71 patients with chronic granulomatous disease (CGD) with a confirmed genetic diagnosis, registered in the online Latin American Society of Primary Immunodeficiencies (LASID) database. Results. Latin American CGD patients presented with recurrent and severe infections caused by several organisms. The mean age at disease onset was 23.9 months, and the mean age at CGD diagnosis was 52.7 months. Recurrent pneumonia was the most frequent clinical condition (76.8%), followed by lymphadenopathy (59.4%), granulomata (49.3%), skin infections (42%), chronic diarrhea (41.9%), otitis (29%), sepsis (23.2%), abscesses (21.7%), recurrent urinary tract infection (20.3%), and osteomyelitis (15.9%). Adverse reactions to bacillus Calmette-Guerin (BCG) vaccination were identified in 30% of the studied Latin American CGD cases. The genetic diagnoses of the 71 patients revealed 53 patients from 47 families with heterogeneous mutations in the CYBB gene (five novel mutations: p.W361G, p.C282X, p.W483R, p.R226X, and p.Q93X), 16 patients with the common deletion c.75_76 del.GT in exon 2 of NCF1 gene, and two patients with mutations in the CYBA gene. Conclusion. The majority of Latin American CGD patients carry a hemizygous mutation in the CYBB gene. They also presented a wide range of clinical manifestations most frequently bacterial and fungal infections of the respiratory tract, skin, and lymph nodes. Thirty percent of the Latin American CGD patients presented adverse reactions to BCG, indicating that this vaccine should be avoided in these patients. (C) 2015 Wiley Periodicals, Inc.621221012107Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Agence Nationale de la Recherche [ANR13-ISV3-0001-01]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    The Role of AIRE in the Immunity Against Candida Albicans in a Model of Human Macrophages

    No full text
    Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans

    image_5.jpeg

    No full text
    <p>Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans.</p

    image_6.jpeg

    No full text
    <p>Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans.</p

    image_7.jpeg

    No full text
    <p>Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans.</p

    image_3.jpeg

    No full text
    <p>Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans.</p

    image_1.jpeg

    No full text
    <p>Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans.</p
    corecore