545 research outputs found

    Chelation Combination - A Strategy to Mitigate the Neurotoxicity of Manganese, Iron, and Copper?

    Get PDF
    The chelating thiol dimercaptosuccinate (DMSA) and the traditional agent D-penicillamine (PSH) are effective in enhancing the urinary excretion of copper (Cu) and lead (Pb) in poisoned individuals. However, DMSA, PSH, EDTA (ethylenediamine tetraacetate), and deferoxamine (DFOA) are water-soluble agents with limited access to the central nervous system (CNS). Strategies for mobilization of metals such as manganese (Mn), iron (Fe), and Cu from brain deposits may require the combined use of two agents: one water-soluble agent to remove circulating metal into urine, in addition to an adjuvant shuttler to facilitate the brain-to-blood mobilization. The present review discusses the chemical basis of metal chelation and the ligand exchange of metal ions. To obtain increased excretion of Mn, Cu, and Fe, early experiences showed promising results for CaEDTA, PSH, and DFOA, respectively. Recent experiments have indicated that p-amino salicylate (PAS) plus CaEDTA may be a useful combination to remove Mn from binding sites in CNS, while the deferasirox-DFOA and the tetrathiomolybdate-DMSA combinations may be preferable to promote mobilization of Fe and Cu, respectively, from the CNS. Further research is requested to explore benefits of chelator combinations. Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Chelation Combination - A Strategy to Mitigate the Neurotoxicity of Manganese, Iron, and Copper?publishedVersio

    The Chemistry Behind the Use of Agricultural Biomass as Sorbent for Toxic Metal Ions: pH Influence, Binding Groups, and Complexation Equilibria

    Get PDF
    Waters, because of human activities, are often characterized by different kinds of contamination. In this chapter we will deal with contamination due to toxic metal ions. To purify wastewaters from these pollutants different treatment processes are applied, which include chemical precipitation, chemical oxidation or reduction, electrochemical treatment, membrane filtration, ion exchange, carbon sorption, and coprecipitation/sorption. A number of these processes are extremely expensive and some of them are ineffective at low concentrations. Alternative cost effective technologies based on low cost sorbents are nowadays of great concern in the applied research. These low cost sorbents must be abundant in nature, easily available, and above all they have to fit the worldwide request of recycling. Certain waste products from agricultural operations may become inexpensive sorbents and the potential of some of these wastes for the removal of a number of metal ions has been extensively investigated. The use of these wastes as sorbents fulfills two important scopes for the protection of environment: the reuse of waste materials and the detoxification of wastewaters. The biomass source depends on the agricultural production prevailing in the geographical areas where pollution and subsequent decontamination process take place. The real challenge in the field of biosorption is to identify the chemical mechanism that governs metal uptake by biosorbents. Vegetal biomaterials, constituted principally by lignin, cellulose and by a non-negligible portion of fatty acid as major constituents, can be regarded as natural ion-exchange materials. Furthermore, the functional groups on the biomaterial surface, such as hydroxyl, carbonyl, amino, sulphydryl and carboxylic groups, allow the sorption of metal ions by strong coordination. Therefore, identification of the functional groups can help in shedding light on the mechanism responsible for metal uptake. Also some factors affecting the sorption process such as particle size, pH, metal ion concentration, agitation time, and kinetics must be investigated. The results obtained contribute to the knowledge of the overall process that takes place

    Mercury toxicity and detection using chromo-fluorogenic chemosensors

    Get PDF
    Mercury (Hg), this non-essential heavy metal released from both industrial and natural sources entered into living bodies, and cause grievous detrimental effects to the human health and ecosystem. The monitoring of Hg2+ excessive accumulation can be beneficial to fight against the risk associated with mercury toxicity to living systems. Therefore, there is an emergent need of novel and facile analytical approaches for the monitoring of mercury levels in various environmental, industrial, and biological samples. The chromo-fluorogenic chemosensors possess the attractive analytical parameters of low-cost, enhanced detection ability with high sensitivity, simplicity, rapid on-site monitoring ability, etc. This review was narrated to summarize the mercuric ion selective chromo-fluorogenic chemosensors reported in the year 2020. The design of sensors, mechanisms, fluorophores used, analytical performance, etc. are summarized and discussed

    Iron chelating agents for iron overload diseases

    Get PDF
    Although iron is an essential element for life, an excessive amount may become extremely toxic both for its ability to generate reactive oxygen species, and for the lack in humans of regulatory mechanisms for iron excretion. Chelation therapy has been introduced in clinical practice in the seventies of last century to defend thalassemic patients from the effects of iron overload and, in spite of all its limitations, it has dramatically changed both life expectancy and quality of life of patients. It has to be considered that the drugs in clinical use present some disadvantages too, this makes urgent new more suitable chelating agents. The requirements of an iron chelator have been better and better defined over the years and in this paper they will be discussed in detail. As a final point the most interesting ligands studied in the last years will be presented

    Sustainable vegetable oil-based biomaterials: synthesis and biomedical applications

    Get PDF
    One of the main criteria for ecological sustainability is that the materials produced for common use are green. This can include the use of biomaterials and materials that are environmentally friendly, biodegradable and produced at low cost. The exploration of natural resources as sustainable precursors leads to the production of biopolymers that are useful for 3D printing technology. Recently, waste vegetable oils have been found to be a good alternative source for the production of biopolymers in various applications from the engineering to the biomedicine. In this review, the processes for the synthesis of vegetable oil-based biomaterials are described in detail. Moreover, the functionalization strategies to improve the mechanical properties of these materials and the cell-material interaction for their potential use as micro-structured scaffolds in regenerative medicine are discussed

    Titolazioni chelometriche con EDTA: considerazioni sul grafico di Reilley

    Get PDF
    Theory and procedure on which Reilley curve is based are discussed; it defines the minimum pH for an effective metal titration with EDTA. This curve, widely reported in Analytical Chemistry textbooks, was originally presented in an implicit way by Reilley, who assumed a 106 conditional constant for 0.01 M metal concentration. We report here the conditional constants necessary for 99, 99.9 and 99.99 complex formation percentage at various analytical concentration. An updated Reilley plot is furthermore presented, which takes into consideration all formation constants at 20°C reported till 1998 for EDTA complexes

    A Friendly Complexing Agent for Spectrophotometric Determination of Total Iron

    Get PDF
    Iron, one of the most common metals in the environment, plays a fundamental role in many biological as well as biogeochemical processes, which determine its availability in different oxidation states. Its relevance in environmental and industrial chemistry, human physiology, and many other fields has made it necessary to develop and optimize analysis techniques for accurate determination. Spectrophotometric methods are the most frequently applied in the analytical determination of iron in real samples. Taking advantage of the fact that desferrioxamine B, a trihydroxamic acid used since the 1970s in chelation therapy for iron overload treatment, forms a single stable 1:1 complex with iron in whichever oxidation state it can be found, a smart spectrophotometric method for the analytical determination of iron concentration was developed. In particular, the full compliance with the Lambert-Beer law, the range of iron concentration, the influence of pH, and the interference of other metal ions have been taken into account. The proposed method was validated in terms of LoD, LoQ, linearity, precision, and trueness, and has been applied for total iron determination in natural water certified material and in biological reference materials such as control human urine and control serum

    A distal renal tubular acidosis showing hyperammonemia and hyperlactacidemia

    Get PDF
    Introduction: distal renal tubular acidosis (dRTA) presents itself with variable clinical manifestations and often with late expressions that impact on prognosis. Case report: A 45-day-old male infant was admitted with stopping growth, difficult feeding and vomiting after meals. Clinical tests and labs revealed a type 1 renal tubular acidosis, even if the first blood tests showed ammonium and lactate increase. We had to exclude metabolic diseases before having a certain diagnosis. Conclusions: blood and urine investigations and genetic tests are fundamental to formulate dRTA diagnosis and to plan follow-up, according to possible phenotypic expressions of recessive and dominant autosomal forms in patients with dRTA

    Gadolinium in Medical Imaging - Usefulness, Toxic Reactions and Possible Countermeasures - A Review

    Get PDF
    Gadolinium (Gd) is one of the rare-earth elements. The properties of its trivalent cation (Gd3+) make it suitable to serve as the central ion in chelates administered intravenously to patients as a contrast agent in magnetic resonance imaging. Such Gd-chelates have been used for more than thirty years. During the past decades, knowledge has increased about potential harmful effects of Gd-chelates in patients with severe renal dysfunction. In such patients, there is a risk for a potentially disabling and lethal disease, nephrogenic systemic fibrosis. Restricting the use of Gd-chelates in persons with severely impaired renal function has decreased the occurrence of this toxic effect in the last decade. There has also been an increasing awareness of Gd-retention in the body, even in patients without renal dysfunction. The cumulative number of doses given, and the chemical structure of the chelate given, are factors of importance for retention in tissues. This review describes the chemical properties of Gd and its medically used chelates, as well as its toxicity and potential side effects related to injection of Gd-chelates. Keywords: chelates; contrast induced nephropathy; gadolinium; gadolinium induced respiratory distress syndrome; gadolinium kinetics; gadolinium toxicity; nephrogenic systemic fibrosis; side effects of gadolinium chelates; treatment of gadolinium toxicity. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).Gadolinium in Medical Imaging - Usefulness, Toxic Reactions and Possible Countermeasures - A ReviewpublishedVersio

    Unusual PLS application for Pd(ii) sensing in extremely acidic solutions

    Get PDF
    An economic and extremely selective device for Pd(ii) determination in very acidic solutions, TazoC-Mar@ is presented. The sensor was prepared via an ion exchange technique of an azoic ligand, (2-(tetrazolylazo)-1,8 dihydroxy naphthalene-3,6,-disulphonic acid), named TazoC, on a Macroporous Strong Anion Exchange Resin, namely Marathon® (Dow Chemical-USA). The TazoC-Mar@ rapidly forms complexes with palladium(ii) ions, which give an intense blue colour to the solid phase, even at low pH. The reaction is highly selective and no other metal ions react with the device at this pH. Moreover, the quantification of Pd(ii) is reliable when applying partial least squares regression (PLS) to relate the signal to the metal ion concentration. The regression model gives a good fit and correct predictions of Pd(ii) concentrations in unknown samples. The method presented here is highly sensitive with an LOD and LOQ equal to 0.2 nM and 0.5 nM, respectively
    corecore