23 research outputs found

    Rapid Evolution of Social Learning

    Get PDF
    Culture is widely thought to be beneficial when social learning is less costly than individual learning and thus may explain the enormous ecological success of humans. Rogers (1988. Does biology constrain culture. Am. Anthropol. 90: 819–831) contradicted this common view by showing that the evolution of social learning does not necessarily increase the net benefits of learned behaviours in a variable environment. Using simulation experiments, we re-analysed extensions of Rogers' model after relaxing the assumption that genetic evolution is much slower than cultural evolution. Our results show that this assumption is crucial for Rogers' finding. For many parameter settings, genetic and cultural evolution occur on the same time scale, and feedback effects between genetic and cultural dynamics increase the net benefits. Thus, by avoiding the costs of individual learning, social learning can increase ecological success. Furthermore, we found that rapid evolution can limit the evolution of complex social learning strategies, which have been proposed to be widespread in animals.Human Evolutionary Biolog

    Predation and the Phasing of Sleep: An Evolutionary Individual-based Model

    Get PDF
    All mammals thus far studied sleep, yet important questions remain concerning the ecological factors that influence sleep patterns. Here, we developed an evolutionary individual-based model to investigate the effect of predation pressure on prey sleep. We investigated three ecological conditions, including one that assumed a dynamic interaction between predator and prey behaviour. In condition 1, we found that monophasic predators (i.e. with one sleep bout per 24 h) select for monophasic prey that sleep perfectly out of phase with predators. In condition 2, predators were monophasic but the safety of prey varied as a function of their activity (sleeping versus awake). In this condition, the prey adjusted their sleeping behaviour to lower the risk of predation. Finally, in condition 3, we modelled a more dynamic interaction between predator and prey, with predator activity dependent on prey activity in the previous hour. In this scenario, the prey adjusted their behaviour relative to one another, resulting in either greater or lesser synchrony in prey as a function of predator searching behaviour. Collectively, our model demonstrates that predator behaviour can have a strong influence on prey sleep patterns, including whether prey are monophasic or polyphasic (i.e. with many sleep bouts per 24 h). The model further suggests that the timing of sleep relative to predator behaviour may depend strongly on how other potential prey partition the activity period.Human Evolutionary Biolog

    Modeling Imitation and Emulation in Constrained Search Spaces

    Get PDF
    Social transmission of behavior can be realized through distinct mechanisms. Research on primate social learning typically distinguishes two forms of information that a learner can extract from a demonstrator: copying actions (defined as imitation) or copying only the consequential results (defined as emulation). We propose a decomposition of these learning mechanisms (plus pure individual learning) that incorporates the core idea that social learning can be represented as a search for an optimal behavior that is constrained by different kinds of information. We illustrate our approach with an individual-based model in which individuals solve tasks in abstract “spaces” that represent behavioral actions, results, and benefits of those results. Depending on the learning mechanisms at their disposal, individuals have differential access to the information conveyed in these spaces. We show how different classes of tasks may provide distinct advantages to individuals with different learning mechanisms and discuss how our approach contributes to current empirical and theoretical research on social learning and culture.Human Evolutionary Biolog

    Sexual Dimorphism in Primate Aerobic Capacity: A Phylogenetic Test

    Get PDF
    Male intrasexual competition should favour increased male physical prowess. This should in turn result in greater aerobic capacity in males than in females (i.e. sexual dimorphism) and a correlation between sexual dimorphism in aerobic capacity and the strength of sexual selection among species. However, physiological scaling laws predict that aerobic capacity should be lower per unit body mass in larger than in smaller animals, potentially reducing or reversing the sex difference and its association with measures of sexual selection. We used measures of haematocrit and red blood cell (RBC) counts from 45 species of primates to test four predictions related to sexual selection and body mass: (i) on average, males should have higher aerobic capacity than females, (ii) aerobic capacity should be higher in adult than juvenile males, (iii) aerobic capacity should increase with increasing sexual selection, but also that (iv) measures of aerobic capacity should co-vary negatively with body mass. For the first two predictions, we used a phylogenetic paired t-test developed for this study. We found support for predictions (i) and (ii). For prediction (iii), however, we found a negative correlation between the degree of sexual selection and aerobic capacity, which was opposite to our prediction. Prediction (iv) was generally supported. We also investigated whether substrate use, basal metabolic rate and agility influenced physiological measures of oxygen transport, but we found only weak evidence for a correlation between RBC count and agility.Human Evolutionary Biolog
    corecore