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Abstract 

Experiments in captivity have provided evidence for social learning, yet it remains 

challenging to demonstrate social learning in the wild. Recently, we developed 

network-based diffusion analysis (NBDA) as a new approach to infer social learning 

from observational data. NBDA fits alternative models of asocial and social learning 

to the diffusion of a behavior through time, where the potential for social learning is 

related to a social network. Here, we investigate the performance of NBDA in relation 

to variation in group size, network heterogeneity, observer sampling errors and 

duration of trait diffusion. We find that observation errors, when severe enough, can 

lead to increased Type I error rates to detect social learning. However, elevated Type I 

error rates can be prevented by coding the observed times of trait acquisition into 

larger time units. Collectively, our results provide further guidance to applying 

NBDA and demonstrate that the method is more robust to sampling error than initially 

expected. 
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Introduction 

In many animal species, individuals learn socially by observing the behavior of other 

individuals. While sophisticated experiments on captive animals have identified 

different learning mechanisms in animals (Galef & Giraldeau, 2001; Hoppitt & 

Laland, 2008), inferring the existence of social learning in wild animals remains an 

important and challenging task. Abandonment of the highly controlled experimental 

settings of captive studies is needed to investigate how social and ecological 

conditions in wild animals affect social learning dynamics and the emergence of 

traditions, and more generally for understanding the evolution of social learning and 

culture. However, the lack of experimental control also introduces new 

methodological problems. Important methods of inferring social learning in wild 

animals, such as the “ethnographic method” (Perry & Manson, 2003; Rendell & 

Whitehead, 2001; van Schaik, et al., 2003; Whiten, et al., 1999) and diffusion curve 

analysis (Reader, 2004), can have low statistical power to detect social learning and 

produce a high rate of false positives (Franz & Nunn, 2009; Galef, 2004; Laland & 

Galef, 2009; Laland & Hoppitt, 2003; Laland & Janik, 2006; Laland & Kendal, 2003; 

Reader, 2004). Thus, new methods are needed to investigate social learning. 

Recently, we developed network-based diffusion analysis (NBDA) to 

overcome the limitations of previous approaches (Franz & Nunn, 2009). NBDA 

makes the reasonable assumption that social learning is more likely to take place 

among conspecifics that are relatively more closely linked in a social network 

(Coussi-Korbel & Fragaszy 1995). In the case of a food processing technique that is 

transmitted socially, for example, we expect that food related behaviors spread most 

quickly among individuals that often feed together, and thus have strong connections 

in a co-feeding network (for an example, see Figure 1). In the case of social learning, 
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but not asocial learning, we expect that the structure of a social network (i.e. the 

strength of connections among individuals) influences how a novel behavior spreads 

through a group of animals. NBDA aims to identify whether such an influence 

occurred in the observed diffusion of a novel behavior. For this purpose, alternative 

agent-based models of social and asocial learning are fitted to the observed diffusion 

of a novel behavior. These models provide a way to estimate the probabilities with 

which each individual learns through social or asocial learning during the different 

stages of a diffusion. By comparing these probabilities to the actual learning events, 

one can assess which learning mechanism was most likely to have caused the 

observed diffusion. 

The statistical analysis of NBDA is based on maximum likelihood model 

fitting. The original NBDA version developed by Franz and Nunn (2009) is based on 

two alternative models: (1) pure asocial learning, in which each individual acquires 

the new behavior independently of others, and (2) a pure social learning model in 

which each individual (except the “inventor”) acquires the new behavior by social 

learning. In the asocial learning model, learning is assumed to occur with a constant 

probability in each time step. In the social learning model, the probability of learning 

from other group members is assumed to be determined by the strength of the 

connections to others in a social network. Thus, the likelihood that an individual 

follows another in the diffusion of the novel behavior is dependent on the strength of 

its relationship to the knowledgeable individual. The identification of the best fitting 

model is based on the Akaike Information Criterion (Burnham & Anderson, 2002). 

NBDA thus uses a flexible statistical framework that compares the fit of 

different a priori models (Bolker, 2008; Burnham & Anderson, 2002). This flexibility 

is important because it provides a powerful platform to investigate more complex 
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learning processes than those included in the simple NBDA version of Franz and 

Nunn (2009). Thus, different versions have been developed that include “mixed” 

learning models with both social and asocial learning (Franz & Nunn, 2009; Hoppitt, 

Boogert, & Laland, 2010; Hoppitt, Kandler, Kendal, & Laland, this issue), models in 

which individual specific variables, such as dominance rank or neophobia, can impact 

asocial learning dynamics (Hoppitt, et al., 2010) and models that include task 

structure, i.e. learned behaviors that consist of multiple steps (Hoppitt, et al., this 

issue). 

In addition, Hoppitt, Boogert and Laland (2010) developed a variation of 

NBDA in which model fitting only focuses on the order, rather than actual timing, in 

which individuals acquired the new behavior. They refer to this method as order of 

acquisition diffusion analysis (OADA), and to methods that use explicit information 

on the timing of events as time of acquisition diffusion analysis (TADA).  Included 

under TADA is the original method of Franz and Nunn (2009) and extended versions 

developed by Hoppitt et al. (2010). Focusing on the order of diffusion and ignoring 

the exact timing of learning events is a fundamental difference to the NBDA method 

developed by Franz and Nunn (2009). However, OADA is also a network-based 

method that analyses diffusion dynamics by fitting alternative models of social and 

asocial learning (in which social learning depends on network structure). Therefore, 

Hoppitt, Boogert and Laland proposed using NBDA as an umbrella term for network-

based analyses of trait diffusion. In the following we will adopt this classification of 

NBDA methods and therefore also refer to the methods developed by ourselves 

(Franz and Nunn, 2009) as TADA. 

Basic analysis of NBDA performance has revealed that the power to detect 

social learning increases with increasing group size (Franz and Nunn, 2009, Hoppitt et 
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al., in press) and length of diffusion (Hoppitt, et al., 2010). Heterogeneity in weights 

of network edges seems to have a stronger impact on the performance of OADA 

compared to TADA (Hoppitt, et al., 2010). Furthermore, Hoppitt et al. (2010) showed 

that violating assumptions of specific NBDA implementations, such as ignoring 

effects of individual-level variables (e.g. dominance rank) on asocial learning, can 

lead to decreased power to detect social learning and increased Type I error rates. 

These analyses give a first impression of the factors that impact the probability 

to correctly or erroneously infer social learning using NBDA. To effectively apply 

NBDA methods, however, we need a richer understanding of how basic factors, such 

as group size and network features, influence statistical performance, including 

interactions among the factors. Furthermore, we have very limited knowledge about 

the effects of observation errors on the statistical performance of NBDA. Observation 

errors can potentially increase Type I error rates and decrease power, resulting in 

Type II errors. Trait diffusion in wild animals is rarely (if ever) known with absolute 

certainty, especially when the trait is performed rarely and when observations do not 

cover the entire activity period of the group. Investigating the effects of observation 

errors thus is of particular importance for applying NBDA methods to wild animals, 

where unfettered observations of each individual across a given time period are 

typically impossible.  

In this study, we addressed these problems by significantly extending our 

previous analyses of the TADA method that we (Franz and Nunn, 2009) referred to as 

“extended NBDA.” This method fits a pure asocial learning model and a mixed 

learning model with both social and asocial learning. Specifically, we investigated the 

effects of group size, network heterogeneity, duration of trait diffusion and sampling 

errors on times of trait acquisition for each individual. We also investigated whether 
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re-coding these observations into discrete time steps (Figure 2) can offset negative 

effects of sampling errors. To systematically investigate these effects, we simulated 

artificial diffusion data and the “observation” and “coding” of these data using 

extensions of the agent-based models described by Franz and Nunn (2009). To 

simulate errors in observing trait diffusion and the analysis of diffusion data 

(including different coding regimes for diffusion times), we implemented a virtual 

“observer” and “analyst.” 

 

Methods 

One part of our analyses focuses on assessing Type I error rates, i.e. the probability to 

erroneously infer social learning when only asocial learning caused the spread of a 

novel behavior. For this purpose, we simulated learning dynamics with pure asocial 

learning and then applied the “extended NBDA” method of Franz and Nunn (2009) to 

the diffusion data that is generated by these simulations. The other part of our 

analyses focused on assessing the statistical power to detect social learning when it 

actually occurred. Although we expect that in real animals social learning usually co-

occurs with asocial learning, we performed simulations with pure social learning. By 

focusing on this extreme case our results reveal the upper limit of the power to detect 

social learning. 

We used the “extended NBDA” method of Franz and Nunn (2009) because we 

aimed to assess the performance of a method that can be applied to wild animals for 

which we expect that a new trait spreads through a mixture of individual and social 

learning instead of pure social learning. The “extended NBDA” method is more 

suitable in this case because it fits two models: one involving pure asocial learning 

and another in which both social and asocial learning take place. 
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To generate artificial diffusion data we used the social and asocial learning 

agent based models (ABMs) described by Franz and Nunn (2009). These models 

assume that initially one individual (the inventor) is already skilled, i.e. it has already 

learned the new behavior. All other individuals are assumed to be naïve, i.e. they have 

not yet learned the new behavior. In the asocial learning model each naïve individual 

can acquire the new trait with a fixed probability in every time step independently of 

others in the simulated population. In the social learning model, naïve individuals 

learn from skilled individuals with whom they have social contact. Specifically, 

learning probabilities depend on the strength of social network connections to skilled 

group members and a parameter τ, which determines how connection strengths are 

translated into social learning probabilities. Increasing the value of τ generally results 

in higher probabilities of social learning among connected individuals and thus 

shorter diffusion durations (see Franz and Nunn 2009). Therefore, by varying this 

parameter we were able to investigate the effects of diffusion duration on statistical 

performance of NBDA. 

We extended these models by explicitly simulating an observer and an 

analyst. The observer records the first performance of the new trait for each 

individual. By using an observer, we were able to simulate observation and sampling 

errors by varying the probability that the observer identifies when an individual first 

performed the new trait. For this purpose we assumed that in each time step the 

observer has a fixed probability of detecting a performed behavior. Thus, the observer 

can detect the behavior when it first occurred or some time thereafter (e.g., Figure 2). 

The analyst takes the data from the observer and codes the recorded times of 

acquisition into time units that might be larger than the time units that were used by 
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the observer (i.e. the simulated time steps, see Figure 2). These “coded” data were 

then used as input to TADA. 

NBDA methods require as input a social network that is assumed to reflect 

social learning opportunities for the observed trait. Here we assumed that the analyst 

has a perfect knowledge about the social network. Therefore, the social network used 

to simulate social learning dynamics was also used as input to TADA. 

We used Latin hypercube sampling to investigate how multiple parameters 

influence the performance of TADA (Rushton, Lurz, Gurnell, & Fuller, 2000; 

Seaholm, Ackerman, & Wu, 1988). Latin hypercube sampling is a type of stratified 

Monte Carlo sampling that has been used in epidemiological modeling and more 

efficiently explores parameter space than random sampling procedures. We varied (1) 

group size, (2) network heterogeneity, (3) learning speed, (4) probability that the 

observer records a performed behavior and (5) the length of time units that the analyst 

uses to code the observed data (Figure 2). Table 1 gives ranges in which these 

parameters were varied. We used Latin hypercube sampling to generate 1,000,000 

parameter sets separately for social and asocial learning simulations. For each of these 

parameter sets we simulated a single diffusion, in which a randomly chosen individual 

was initially set to be the skilled “inventor”. 

To generate social networks with different degrees of heterogeneity we draw 

all edge weights (or connection strengths between individuals) from differently 

skewed distributions. The weight w for an edge between two individuals i and j was 

calculated based on a random number r from the interval between 0 and 1 and a 

heterogeneity coefficient h: 
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where N is the number of individuals in a group. Setting h to zero results in a 

homogeneous network. A value of one results in edge weights that are uniformly 

distributed. Values larger than one result in more skewed distributions with many 

weak and few strong edges. Dividing by the mean sum of edge weights from one 

individual to all others ensures that diffusion duration is largely independent of group 

size and network heterogeneity. In real animals, group size and network heterogeneity 

might have an effect on the duration of diffusion, which for instance could lead to an 

indirect influence of group size on performance of TADA. In our analysis we tried to 

eliminate such indirect effects because we wanted to infer the direct effects of group 

size, network heterogeneity and diffusion duration on TADA performance. 

To analyze the performance of TADA, we coded results in which the method 

inferred social learning as a one and otherwise as zero. We then used these codes as 

the dependent variable in the statistical analysis, focusing in particular on the 

probability of detecting social learning when data were generated under social 

learning (a correct inference) or under asocial learning (an incorrect inference). In 

addition, we calculated the duration of the observed diffusion after the analyst coded 

the observed data into new time units. To identify the important predictor variables 

and possible interactions among them we performed classification tree analysis 

(De'ath & Fabricius, 2000) using the package “tree” in the statistical software R (R 

Development Core Team, 2007). Classification tree analysis hierarchically splits the 

data set into subcategories in a way that minimizes the variance of the response 

variable in the emerging subsets. Graphical output based on this analysis can reveal 
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and help to visualize complex interactions among predictor variables. In our analysis 

we used the five predictor variables: group size, degree of network heterogeneity (h), 

diffusion duration (measured in the number of coded time units, see also Figure 2), 

length of coded time unit (measured in simulated time steps, see also Figure 2), and 

observation probability per coded time unit (which reflects the probability that the 

observer records the behavior performed by an individual in one time unit that was 

coded by the analyst.) In the electronic supplementary materials we provide an R 

script with the performed simulations and analyses. 

 

Results 

We first examined the results involving pure asocial learning. We found that the 

probability to incorrectly infer social learning depended mainly on two factors: 

observation probability and diffusion duration. Note that observation probability and 

diffusion duration are measured in coded time units used by the analyst (rather than 

simulated time steps). Group size, network heterogeneity and length of coded time 

unit had no major influence on the probability of erroneously detecting social 

learning. 

The classification tree is shown in Figure 3. At the base of this tree is the 

observation probability, which illustrates the importance of observation errors. In 

general higher observation probabilities resulted in lower Type I error rates. While 

observation probabilities lower than 0.37 resulted in 18 percent probability to 

incorrectly infer social learning (leaf A), observation probabilities between 0.37 and 

0.75 led to an incorrect inference of social learning in only six percent of simulations 

(leaf B). When observation probabilities were at least 0.75 incorrect inferences of 

social learning were predicted to occur in no more than two percent of simulated data 
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sets (leaves C and D). Under these conditions, very short diffusion durations 

additionally decreased Type I error rates (leaf C). 

We then examined data generated under pure social learning to assess 

statistical power. The classification tree analysis revealed that the probability to 

correctly infer social learning also depended mainly on two factors: the diffusion 

duration and group size. Observation probability, network heterogeneity and the 

length of coded time units had no major influence on the probability to correctly 

detect social learning.  

Figure 4 shows the classification tree from the analysis of traits spread through 

social learning. The probability of correctly inferring social learning was very low 

when the diffusion duration was shorter than three time units (leaves A and B). In 

these cases TADA could not infer social learning because information from the spread 

of the new behavior was insufficient to allow a better fit of the combined asocial and 

social learning model relative to the pure asocial learning model. Higher probabilities 

for inferring social learning emerged when the diffusion duration was equal or longer 

than three coded time units (leaves C, D and E), but it was limited to 50 percent when 

the diffusion duration did not exceed four (leaf C). Note that for leaves A, B and C the 

statistical power was completely determined by diffusion duration and not strongly 

affected by another predictor variable. 

When the duration of coded diffusion was equal to or larger than five, group 

size had a strong effect on the power to detect social learning. In groups with at least 

17 individuals, social learning was correctly inferred in 87 percent of the cases (leaf 

F). For smaller group sizes (the simulated minimum was five), social learning was 

inferred in 60 percent of simulations (leaf D). 
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Discussion 

We investigated how group size, network heterogeneity, diffusion duration, 

observation probability and length of coded time units impact the statistical 

performance of NBDA. In our analysis we focused on the TADA that Franz and Nunn 

(2009) referred to as “extended NBDA,” which involves the comparison of a mixed 

model of social and asocial learning with one of pure asocial learning. Our most 

significant finding was that observation errors, when severe enough, can lead to 

increased Type I error rates. Elevated Type I error rates can be prevented by coding 

the observed diffusion times into larger units before applying TADA. 

Observation errors might occur because animals cannot be observed 

continuously, for example when focal sampling is used (Altmann, 1974). In our 

simulations observation errors resulted in delayed recording of the acquisition times 

of the diffusing behavior (Figure 2). Importantly, observation errors of this type can 

also result in errors in the order of trait diffusion.  Indeed, we found that in 89 percent 

of our simulated data sets, observation errors created sequence differences between 

the simulated and “observed” diffusion (i.e., changes in order of acquisition). 

Observation errors will generally become more pronounced when sampling effort per 

individual decreases and when the new behavior is performed less frequently. 

To assess the power to detect social learning and Type I error rates we used 

simulated diffusion dynamics created by pure social and asocial learning as input to 

TADA. The statistical analysis of TADA results was performed using classification 

trees. This method hierarchically splits the data set into subcategories in a way that 

minimizes the variance of the response variable in the emerging subsets. Graphical 

output from the classification tree analysis can reveal and help to visualize complex 

interactions among predictor variables. However, resulting numbers indicating sharp 
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differences on the tree should not be viewed as thresholds that involve sudden jumps 

in power or Type I errors. While they may in fact represent thresholds, they may also 

reflect an underlying gradual effect of one or more predictors. 

We found that observation errors can lead to elevated Type I error rates 

(Figure 3). To our surprise, however, TADA was more robust to observation errors 

than we anticipated. Previously we suggested that the length of coded time units 

should be long enough to ensure that each acquisition of the new behavior occurred 

with high certainty in the coded time step (Franz & Nunn, 2009). In the example 

displayed in figure 2, this would require us to choose the coding possibility 2. The 

results of the current study lead us to modify this requirement. We now offer a rule of 

thumb that having at least about a 50 percent probability that the acquisition of the 

behavior occurred in the coded time step is sufficient to prevent elevated Type I error 

rates (i.e., a bit more conservative than the >37% shown on Figure 3, since the 

predicted Type I error rate as 37% is 0.06). In figure 2, this would allow us to choose 

the coding possibility 1 (because in this case two out of three individuals acquired the 

new trait in the same coded time step in which they were first observed to perform 

this trait). In cases with a lower observation probability, appropriate coding of time 

steps can be used to keep the probability of Type I errors low. 

Previously, we advised users to keep coded time steps short enough to avoid 

the possibility that two individuals learned in the same coded time step because we 

expected that this would reduce the power to detect social learning (Franz & Nunn, 

2009). Our current results suggest that this advice also can be relaxed. Increasing the 

length of coded time steps only became a problem in our analyses when the resulting 

duration of the diffusion dropped below five. Therefore, we advise users of TADA 

who are uncertain about the extent of observation errors on diffusion times to code 
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diffusion times in rather long time units if this does not lead to a very short duration 

of the coded diffusion. Our analysis indicates that such a procedure minimizes Type I 

errors while not strongly affecting the power to detect social learning. 

In contrast to our method, the TADA methods developed by Hoppitt at al. 

(2010) and Hoppitt at al. (this issue) are time continuous. In other words, they allow 

users to directly include observation times, rather than coding observed data into 

discrete time steps. Nevertheless, it can be expected that time continuous TADA 

methods are as susceptible to observation errors as the time discrete TADA method 

that we used in this study. Thus, if observation errors are strong enough, coding of 

time steps would also be needed when using these other methods. 

The order of acquisition (OADA) method proposed by Hoppitt et al. (2010) 

may, however, be more robust than TADA against observation errors in the times of 

behavior acquisition. OADA does not use information about the time of behavior 

acquisition but only about the corresponding order. As long as observation errors do 

not change the order of the diffusion, the performance of OADA should not be 

impacted. However, it is difficult to predict how strongly the performance of OADA 

is impacted in cases in which observation errors lead to changes in the order of the 

observed diffusion. 

Our finding that group size can strongly increase the power to detect social 

learning while network heterogeneity has little effect is in agreement with previous 

studies of the performance of TADA by Franz and Nunn (2009) and Hoppitt et al. 

(2010). Note that this result does not imply that including the network into the 

analysis of diffusion dynamics is not necessary. Franz and Nunn (2009) showed that 

diffusion curve analysis (Reader, 2004), which ignores social network structure, can 

strongly reduce the power to detect social learning and increase the probability to 
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erroneously infer social learning. The results of our current analyses do not contradict 

these findings. Nevertheless, intuitively one might expect that the power to detect 

social learning should increase with increasing network heterogeneity because the 

more heterogeneous a social network is the stronger the likelihood that it determines 

the pathway that a diffusion can take through a group of individuals. This argument 

makes sense and also explains why the power of OADA to detect social learning 

increases with increasing network heterogeneity dynamics (Hoppitt, et al., 2010). 

However, to distinguish between alternative learning models TADA takes into 

account both order of the diffusion and information about the timing of individual 

learning events (or at least the first observed production of the behavior). This 

information becomes increasingly important for distinguishing among alternative 

learning models in more homogeneous social networks. In completely homogeneous 

networks, TADA exclusively uses data on the timing of learning events and is 

therefore equivalent to diffusion curve analysis (Reader, 2004). The timing of 

learning events can be used to distinguish between social and asocial learning because 

social learning, but not asocial learning, can be expected to result in a positive 

feedback of the number of skilled individuals and learning rate (but see Hoppitt et al., 

this issue). The greater the number of individuals that have acquired a novel behavior, 

the more opportunities exist for others to observe this behavior and learn it 

themselves. The influence of this feedback mechanism is weak in heterogeneous 

social networks because learning dynamics are strongly determined by the structure of 

the network. However, with increasing network homogeneity the influence of the 

feedback mechanism on diffusion dynamics increases. Thus, in more homogeneous 

social networks, TADA makes greater use of information on the timing of learning 

events to distinguish between alternative learning models. This explains why 
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decreasing network heterogeneity does not lead to a decrease in power to detect social 

learning. 

In this context, we additionally emphasize that we explored the effect of 

network heterogeneity only based on the distribution of connection strengths in 

randomly created networks. Thus, we did not explicitly explore possible effects of 

other network characteristics such as community modularity, which can vary 

substantially in real world networks (Kasper & Voelkl, 2009). Furthermore, we did 

not consider in our analysis from which individual in the network the diffusion starts. 

As indicated by the results of Franz and Nunn (2009), this can also affect Type I error 

rates and power. 

Other factors that can strongly affect the statistical performance of TADA 

which we did not consider in our analysis include (1) that a new trait spreads through 

combined effects of social and asocial learning, which would reduce the power to 

detect social learning (Hoppitt, et al., 2010), (2) that observations might begin long 

before the innovation and spread of the new behavior, which would increase the 

power to detect social learning, (3) observation errors in the structure of the social 

network, and (4) errors associated with incorrect identification of individuals in the 

group, such that behaviors are assigned to individuals who may not have learned how 

to perform the behavior. Results from Franz and Nunn (2009) indicate that TADA is 

robust against small disturbances in network structure. To investigate observation 

errors in network structure in more detail it might be suitable to follow the approach 

we have taken in this study and explicitly simulate observations that are used to 

construct social networks. 

In summary, our results confirm that TADA can be a statistically powerful 

tool to infer social learning in wild animals. While the method seems to be robust to a 
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moderate degree of observation errors on recorded times of behavior acquisition, the 

coding of diffusion time steps allows it to cope with strong observation errors. Our 

results suggest that the power to detect social learning will not be strongly affected by 

observation errors. In cases in which observation errors cannot be precisely estimated, 

we therefore recommend relying on a conservative approach by using long time units 

for coding diffusion times. 

Using NBDA to study social learning in wild animals might enable us to gain 

important new insights about ‘culture’ in animals and the evolution of cultural 

capacities in humans. While many social learning studies have focused on identifying 

the existence of social learning mechanisms in different species (Galef & Giraldeau, 

2001; Hoppitt & Laland, 2008), NBDA methods provide a way to study and compare 

dynamics that are created by and influence social learning. Understanding which 

learning biases, or ‘social learning strategies’ (Laland, 2004) drive social learning 

dynamics in groups of animals and humans has received increasing attention in 

empirical and theoretical studies (Boyd & Richerson, 1985; Enquist, Eriksson, & 

Ghirlanda, 2007; Henrich & Boyd, 1998; J. Kendal, Giraldeau, & Laland, 2009; J. R. 

Kendal, Rendell, Pike, & Laland, 2009; R. L. Kendal, Coolen, & Laland, 2004; 

Laland, 2004; McElreath, et al., 2008; McElreath, et al., 2005; Mesoudi & Lycett, 

2009). However, most empirical studies that investigated related questions (reviews: 

Kendal, Coolen, van Bergen & Laland, 2005; Kendal, Coolen & Laland, 2009 ) were 

performed with captive animals. Extensions of current NBDA approaches offer a way 

to approach these questions in the wild.
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Figures and Tables 

 

Table 1: Ranges in which varied parameters were sampled.  

Parameter Range 

Group size 5 - 50 

Network heterogeneity (h) 0 - 10 

Observation probability 0.02 - 1 

Length of coded time unit 1 - 50 

Asocial learning rate (only in the asocial 

learning model) 

0.01 - 0.1 

τ (determines social learning rates in the 

social learning model) 

0.05 - 0.5 
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Figure 1: Schematic representation of a co-feeding network of eight Japanese 

macaques (Ventura, Majolo, Koyama, Hardie, & Schino, 2006). Circles represent 

individuals, and lines indicate social connections between individuals. Line widths are 

proportional to time spent feeding together in close proximity. 



 

 23 

Time

A
Acquisition

of new trait

Observation 

of acquisition
C

CB

BA

Coded acquisition 

times, possibility 1 
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Figure 2: Example that illustrates observation errors and coding of diffusion times. 

The position of A, B and C mark times when three different individuals acquired a 

new trait and when an observer first recorded the new trait in each of these 

individuals. In addition, two possible ways of coding these data into discrete time 

steps of different length are shown. To illustrate how “length of coded time step” and 

“diffusion duration” are calculated in our analysis, we can assume that the depicted 

learning dynamics were simulated with a model in which one time step represents one 

day. The length of coded time steps in possibility 1 would then be one and in 

possibility 2 it would be seven. The diffusion duration using possibility 1 would be 32 

and using possibility 2 it would be five. 
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Figure 3: Classification tree of results from simulations of pure asocial learning. 

Numerical values of the leaves (A-D) indicate proportions of data sets in which social 

learning was erroneously inferred (representing Type I errors). Leaves are labeled to 

facilitate discussion of results that are depicted in the tree. 
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Figure 4: Classification tree of results from simulations of pure social learning. 

Numerical values of the leaves (A-E) indicate proportions of data sets in which social 

learning was correctly inferred. Leaves are labeled to facilitate discussion of results  

that are depicted in the tree. 


