2,091 research outputs found

    Automatically Extracting Templates from Examples for NLP Tasks

    Get PDF
    PACLIC / The University of the Philippines Visayas Cebu College Cebu City, Philippines / November 20-22, 200

    Design and development of a magnetically-driven ventricular assist device (MVAD): in vitro implementation in the fontan circulation

    Get PDF
    A rapidly testable novel Magnetically-Driven Ventricular Assist Device (MVAD) with no m ving parts that can be used to provide assistance to the cardiovascular circulation while reducing caval pressure in patients who have undergone the Fontan procedure to palliate the Hypoplastic Left Heart Syndrome (HLHS) is proposed and studied. A benchtop Mock Flow Loop (MFL) of the cardiovascular circulation with a Fontan total cavopulmonary connection (TCPC) is configured to validate this hypothesis. The MFL is based on a Lumped-Parameter Model (LPM) comprised of upper and lower systemic circulation as well as left and right pulmonary circulation compartments. Needle valves are used to accurately replicate vascular resistance (R) while compliance chambers are used to mimic vascular compliance (C). The MFL centerpiece is the truncated aortic arch with an implanted MVAD. A ferro-fluid solution is mixed in water to simulate magnetically-charged blood. The pulsating flow is induced by drawing the ferro-fluid from a main reservoir with a Harvard Apparatus Medical pump while the MVAD provides assistive momentum to the TCPC. Flow and pressure sensor data at specific points in the MFL are acquired via a National Instruments multichannel data acquisition board and processed using LabView. Different prototypes of the MVAD are tested to validate the hypothesis

    Self-Conscious Emotions and the Right Fronto-Temporal and Right Temporal Parietal Junction

    Get PDF
    For more than two decades, research focusing on both clinical and non-clinical populations has suggested a key role for specific regions in the regulation of self-conscious emotions. It is speculated that both the expression and the interpretation of self-conscious emotions are critical in humans for action planning and response, communication, learning, parenting, and most social encounters. Empathy, Guilt, Jealousy, Shame, and Pride are all categorized as self-conscious emotions, all of which are crucial components to one’s sense of self. There has been an abundance of evidence pointing to the right Fronto-Temporal involvement in the integration of cognitive processes underlying the expression of these emotions. Numerous regions within the right hemisphere have been identified including the right temporal parietal junction (rTPJ), the orbitofrontal cortex (OFC), and the inferior parietal lobule (IPL). In this review, we aim to investigate patient cases, in addition to clinical and non-clinical studies. We also aim to highlight these specific brain regions pivotal to the right hemispheric dominance observed in the neural correlates of such self-conscious emotions and provide the potential role that self-conscious emotions play in evolution

    Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus

    Get PDF
    In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya

    Pretransplant gastroesophageal reflux compromises early outcomes after lung transplantation

    Get PDF
    ObjectivesGastroesophageal reflux disease (GERD) is implicated as a risk factor for bronchiolitis obliterans syndrome after lung transplantation, but its effects on acute rejection, early allograft function, and survival are unclear. Therefore, we sought to systematically understand the time-related impact of pretransplant GERD on graft function (spirometry), mortality, and acute rejection early after lung transplantation.MethodsFrom January 2005 to July 2008, 215 patients underwent lung transplantation; 114 had preoperative pH testing, and 32 (28%) had objective evidence of GERD. Lung function was assessed by forced 1-second expiratory volume (FEV1; percent of predicted) in 97 patients, mortality by follow-up (median, 2.2 years), and acute rejection by transbronchial biopsy.ResultsPretransplant GERD was associated with decreased FEV1 early after lung transplantation (P = .01) such that by 18 months, FEV1 was 70% of predicted in double lung transplant patients with GERD versus 83% among non-GERD patients (P = .05). A similar decrease was observed in single lung transplantation (50% vs 60%, respectively; P = .09). GERD patients had lower survival early after transplant ( P = .02)—75% versus 90%. Presence of GERD did not affect acute rejection (P = .6).ConclusionsFor lung transplant recipients, pretransplant GERD is associated with worse early allograft function and survival, but not increased acute rejection. The compromise in lung function is substantial, such that FEV1 after double lung transplant in GERD patients approaches that of single lung transplant in non-GERD patients. We advocate thorough testing for GERD before lung transplantation; if identified, aggressive therapy early after transplant, including fundoplication, may prove efficacious

    Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host

    Get PDF
    Host shift events play an important role in epizootics as adaptation to new hosts can profoundly affect the spread of the disease and the measures needed to control it. During the late 1990s, an epizootic in Turkey resulted in a sustained maintenance of rabies virus (RABV) within the fox population. We used Bayesian inferences to investigate whole genome sequences from fox and dog brain tissues from Turkey to demonstrate that the epizootic occurred in 1997 (±1 year). Furthermore, these data indicated that the epizootic was most likely due to a host shift from locally infected domestic dogs, rather than an incursion of a novel fox or dog RABV. No evidence was observed for genetic adaptation to foxes at consensus sequence level and dN/dS analysis suggested purifying selection. Therefore, the deep sequence data were analysed to investigate the sub-viral population during a host shift event. Viral heterogeneity was measured in all RABV samples; viruses from the early period after the host shift exhibited greater sequence variation in comparison to those from the later stage, and to those not involved in the host shift event, possibly indicating a role in establishing transmission within a new host. The transient increase in variation observed in the new host species may represent virus replication within a new environment, perhaps due to increased replication within the CNS, resulting in a larger population of viruses, or due to the lack of host constraints present in the new host reservoir

    Human peroxisomal coenzyme A diphosphatase (NUDT7): a target enabling package (TEP)

    Get PDF
    In an effort to characterise the human NUDIX family SGC Oxford has expressed recombinant human NUDT7 as part of the SGC chemical probe programme and solved the first crystal structure of this enzyme. This enabled a crystallographic fragment screen which in conjunction with a separate covalent fragment approach yielded a first-in-class small molecule inhibitor of NUDT7 with activity in the single-digit micromolar range in a catalytic assay. This compound paves the way for chemical probe development and further functional exploration of NUDT7 in physiological and disease contexts

    Transforming Growth Factor-β1 Decreases β2-Agonist–induced Relaxation in Human Airway Smooth Muscle

    Get PDF
    Helper T effector cytokines implicated in asthma modulate the contractility of human airway smooth muscle (HASM) cells. We have reported recently that a profibrotic cytokine, transforming growth factor (TGF)-β1, induces HASM cell shortening and airway hyperresponsiveness. Here, we assessed whether TGF-β1 affects the ability of HASM cells to relax in response to β2-agonists, a mainstay treatment for airway hyperresponsiveness in asthma. Overnight TGF-β1 treatment significantly impaired isoproterenol (ISO)-induced relaxation of carbachol-stimulated, isolated HASM cells. This single-cell mechanical hyporesponsiveness to ISO was corroborated by sustained increases in myosin light chain phosphorylation. In TGF-β1–treated HASM cells, ISO evoked markedly lower levels of intracellular cAMP. These attenuated cAMP levels were, in turn, restored with pharmacological and siRNA inhibition of phosphodiesterase 4 and Smad3, respectively. Most strikingly, TGF-β1 selectively induced phosphodiesterase 4D gene expression in HASM cells in a Smad2/3-dependent manner. Together, these data suggest that TGF-β1 decreases HASM cell β2-agonist relaxation responses by modulating intracellular cAMP levels via a Smad2/3-dependent mechanism. Our findings further define the mechanisms underlying β2-agonist hyporesponsiveness in asthma, and suggest TGF-β1 as a potential therapeutic target to decrease asthma exacerbations in severe and treatment-resistant asthma

    Modulation of N-methyl-N-nitrosourea induced mammary tumors in Sprague–Dawley rats by combination of lysine, proline, arginine, ascorbic acid and green tea extract

    Get PDF
    INTRODUCTION: The limited ability of current treatments to control metastasis and the proposed antitumor properties of specific nutrients prompted us to examine the effect of a specific formulation (nutrient supplement [NS]) of lysine, proline, arginine, ascorbic acid, and green tea extract in vivo on the development of N-methyl-N-nitrosourea (MNU)-induced mammary tumors in rats. METHODS: A single intraperitoneal dose of MNU was injected into each of 20 female Sprague–Dawley rats (aged 50 days) to induce tumors. Two weeks after MNU treatment, a time by which the animals had recovered from MNU-induced toxicity, the rats were divided into two groups. Rats in group 1 (n = 10) were fed Purina chow diet, whereas those in group 2 (n = 10) were fed the same diet supplemented with 0.5% NS. After a further 24 weeks, the rats were killed and tumors were excised and processed. RESULTS: NS reduced the incidence of MNU-induced mammary tumors and the number of tumors by 68.4%, and the tumor burden by 60.5%. The inhibitory effect of NS was also reflected by decreased tumor weight; the tumor weights per rat and per group were decreased by 41% and 78%, respectively. In addition, 30% of the control rats developed ulcerated tumors, in contrast to 10% in the nutrient supplemented rats. CONCLUSION: These findings suggest that the specific formulation of lysine, proline, arginine, ascorbic acid, and green tea extract tested significantly reduces the incidence and growth of MNU-induced mammary tumors, and therefore has strong potential as a useful therapeutic regimen for inhibiting breast cancer development
    • …
    corecore