
Automatically Extracting Templates from Examples for NLP Tasks *

Ethel Ong, Bryan Anthony Hong, Vince Andrew Nuñez
College of Computer Studies, De La Salle University, Manila, Philippines

onge@dlsu.edu.ph, bashx5@yahoo.com, link7488933@yahoo.com

Abstract. In this paper, we present the approaches used by our NLP systems to
automatically extract templates for example-based machine translation and pun generation.
Our translation system is able to extract an average of 73.25% correct translation templates,
resulting in a translation quality that has a low word error rate of 18% when the test
document contains sentence patterns matching the training set, to a high 85% when the test
document is different from the training corpus. Our pun generator is able to extract 69.2%
usable templates, resulting in computer-generated puns that received an average score of
2.13 as compared to 2.7 for human-generated puns from user feedback.

Keywords: Template Extraction, Machine Translation, Joke Generation.

1. Introduction
Templates have been used in IE as extraction patterns to retrieve relevant information from
documents (Muslea, 1999), and in NLG as forms that can be filled in to generate syntactically
correct and coherent text for human readers. They have also been used in machine translation
(Cicekli and Guvenir, 2003) and (McTait, 2001), and in pun generation (Ritchie et al, 2006).

In this paper, we present two NLP systems. TExt (Go et al, 2006 and Nunez, 2008), a bi-
directional English-Filipino machine translator, extracts translation templates from a bilingual
corpus, and together with a bilingual lexicon, uses these templates to translate an input text to
another language. T-Peg (Hong, 2008) utilizes semantic and phonetic knowledge to capture the
wordplay used in a training set of human jokes, resulting in templates that contain variables,
tags, and word relationships that are used to generate punning riddles.
 Because manually creating templates can be tedious and time consuming, several researches
have worked on automatically extracting templates from training examples that have been
preprocessed. In our previous example-based MT, SalinWika (Bautista et al, 2005), templates
are extracted from a bilingual corpus that has been pre-tagged and manually annotated with
word features, resulting in a long training process. Its successor, TExt (Go et al, 2006), did
away with a tagger and instead requires a parallel bilingual corpus and an English-Filipino
lexicon to align pairs of untagged sentences to extract translation templates.
 Our pun generator, T-Peg (Hong, 2008), on the other hand, subjects the training examples
through a pre-processing stage to identify nouns, verbs and adjectives. Instead of manually
annotating the example set, the training algorithm relies on existing linguistic resources and
tools to perform its task.

* Acknowledgments: TExt Translation is part of the “Hybrid English-Filipino Machine Translation

System” project that is funded by the Department of Science and Technology – Philippine Center for
Advanced Science and Technology Research and Development (DOST-PCASTRD). It was developed
by Kathleen Go, Manimin Morga, Vince Nunez, and Francis Veto as their undergraduate thesis.

 Copyright 2007 by Ethel Ong, Bryan Anthony Hong, and Vince Andrew Nuñez

452

2. Extracting and Using Templates for Machine Translation
TExt Translation (Go et al, 2006) is an EBMT system that automatically extracts translation
templates from a bilingual corpus and uses these to translate English text to Filipino and vice
versa. It relies on a bilingual corpus for its training examples, which contains a set of sentences
in the source language with a corresponding translation in the target language. Correspondences
between the sentences are learned and stored in a database of translation templates.
 A translation template is a bilingual pair of patterns where corresponding words and phrases
are aligned and replaced with variables. Each template is a sentence preserving the syntactic
structure and ordering of words in the source text, regardless of the variance in the sentence
structures of the source and target languages. During translation, the input sentence is used to
find a matching source template, while the target template is used to generate the translation.

2.1.Translation Templates and Chunks
TExt learns two types of translation templates using the Translation Template Learner heuristic
presented in (Cicekli and Güvenir, 2003). A similarity translation template contains a sequence
of similar items learned from a pair of input sentences and variables representing the
differences. A difference translation template contains a sequence of differing items from the
pair of input sentences, and variables representing the similarities. Consider the sentence pairs
S1 and S2, and the learned similarity (T1) and difference templates (T2 and T3).

 S1: The boy is walking. � Naglalakad ang batang lalaki.
 S2: The teacher is walking. � Naglalakad ang guro.
 T1: The [1] is walking. � Naglalakad ang [1].
 T2: [2] boy [3]. � [3] [2] batang lalaki.
 T3: [2] teacher [3]. � [3] [2] guro.

Using the lexicon to align the corresponding English and Filipino words in the input
sentences, the tokens “The”, “is walking”, and “Naglalakad ang” are retained as
constants of T1, while “boy/batang lalaki”, and “teacher/guro” are retained as
constants of T2 and T3, respectively. [1], [2], and [3]�are variables in the template.
 A template variable, called chunk, is represented by a numeric value, e.g., [1], to refer to its
domain. The domain allows chunks to have a reference from their source template. Specific
chunks are labelled as [X.n], where X is its domain and n is its sequence number in the
domain. Only the domain is needed to identify if a chunk can be used in translation. For
example, if the domain in a template is [X], then any chunk with a domain “X” can be used to
fill the variables in the template. From S1�and S2, chunks [1.1] and [1.2] are learned. If
another chunk [1.3] is learned from a different set of input sentence pairs in a later training
session, then all these chunks can be used during translation to fill variable [1] in T1.

[1.1]: boy � batang lalaki [1.2]: teacher � guro
 [1.3]: carpenter � karpentero

2.2.Learning Translation Templates
Aligned sentence pairs are analyzed and translation templates are extracted following three
steps, namely template refinement (TR), deriving templates from sentences (DTS), and deriving
templates from chunks (DTC). TR compares an aligned sentence pair against existing templates
in the database. An aligned sentence pair is said to match a given template if it contains a token
that matches exactly with a corresponding token in the template itself. There must be a
corresponding match in both the source and target languages for the template to be considered.
Through these similarities, a candidate refinement is identified. Consider the input sentence
pair S3, and the existing template T4 and chunks [4],�[5]�and [6].

S3: The boy is hopping in the park. �
Nagkakandirit ang lalaki sa parke.

T4: The [4] is [5] in the [6]. � [5] ang [4] sa [6].
[4.1]: girl � babae [5.1]: walking � naglalakad
[6.1]: street � kalsada

453

TR considers S3 as a candidate refinement for T4 because of their matching tokens (in italics).
The identified differences are used to create new chunks, namely [4.2], [5.2] and [6.2].

[4.2]: boy � lalaki [5.2]: hopping � nagkakandirit
 [6.2]: park � parke

 If refinement cannot be performed, DTS is performed to compare the new sentences pair with
other aligned sentence pairs. Both Similarity Template Learning (STL) and Difference
Template Learning (DTL), as presented in Cicekli and Guvenir (2003), are performed. The
differing elements in the input are created as chunks for the similarity templates, while the
similar elements are created as chunks for the difference templates. DTL always generates two
difference templates for each matching input sentence pairs. Consider sentence pairs S4 and S5.

S4: My favorite pet is a dog. � Aso ang aking paboritong alaga.
S5: My favorite color is red. � Pula ang aking paboritong kulay.

All similar tokens between S4�and S5 (in italics) are preserved as constants in the new
similarity template T5 while the differing elements are created as chunks [7] and [8]. On the
other hand, all differing tokens are preserved as constants in the new difference templates T6
and T7 while the similar element is created as a new chunk [9].

T5: My favorite [7] is [8] � [8] ang aking paboritong [7]
[7.1]: pet � alaga [7.2]: color � kulay
[8.1]: a dog � aso [8.2]: red � pula
T6: [9] pet is a dog � Aso ang [9] alaga.
T7: [9] color is red � Pula ang [9] kulay.
[9.1]: My favorite � aking paboritong

 Templates can also be derived from chunks using DTC. Consider the new sentence pair S6
and existing chunks [10] and [11]. DTC simply takes matching chunks from the knowledge
base and uses them as variables to replace parts of S6, resulting in template T8.

S6: Filipinos are known to be cheerful and hospitable. �
 Kilala ang mga Pilipino sa pagiging masayahin at mapanauhin.
[10.3]: Filipinos � mga Pilipino
[11.2]: hospitable � mapanauhin
T8: [10.3] are known to be cheerful and [11.2] �

Kilala ang [10.3] sa pagiging masayahin at [11.2]

2.3.Using the Learned Templates in Translation
Input sentence tokens are analyzed to collect candidate templates and chunks, which must have
at least one word used in the input sentence. The candidates are assigned scores according to
the structure of the template or chunk, the presence or absence of chunk variables in templates,
and the presence of word matches in templates. The translation output that produces the highest
total score is used. In case of a tie, the first candidate with the highest score is selected.

3. Extracting and Using Templates for Pun Generation
T-Peg (Hong, 2008) generates punning riddles using templates learned from training examples
of human-generated puns. Punning riddles are jokes that use wordplay and covers
pronunciation, spelling, and possible semantic similarities and differences. Various resources
are utilized by the learning algorithm, namely the Unisyn phonetic lexicon (Fitt, 2002) that
provides the phonological information of words, the MontyTagger (Liu, 2003) for POS tagging,
the Electronic Lexical Knowledge Base (Jarmasz and Szpakowicz, 2006) to get the base form
of words, the WordNet (2006) for synonym lookup, and the ConceptNet (Liu, et. al. 2004) for
semantic analysis to describe the relations between objects.

3.1.Extracting Punning Templates
A T-Peg template contains the source pun (in question-answer format) with variables replacing
keywords in the pun. Variables are of three types. Similar-sounding variables represent words

454

with the same pronunciation as the regular variable, for example, waist and waste. Compound
word variables are two variables that combine to form a word, for example sun and burn.

A template is annotated with word relationships, represented as <varName1>
<relationship type> <varName2>, to show how one variable is related to another.
Synonym relationships denote that the first variable is synonymous with the second variable. Is-
a-word relationships denote that the first variable combined with the second variable should
form a word. Sounds-like relationships denote that the first variable should have the same
pronunciation with the second variable. Semantic relationships show how the first variable is
related to the second variable.
 The training corpus is preprocessed by the tagger, stemmer, and synonym finder. The tagged
corpus undergoes valid word selection to identify which of the nouns, verbs, and adjectives in
the punning riddle are candidate variables. Word relationships between these variables are then
determined by the phonetic checker, synonym checker, and semantic analyzer.

Consider the pun P1 and its corresponding template T1, where “Xn” represents question-side
variables, and “Yn” represents answer side variables. “<var>-0” represents the similar
sounding word of <var> from Unisyn, for example, Y1-0 represents the word “sun” which has
the same pronunciation as the keyword “son” (variable Y1). Table 1 lists the semantic word
relationships derived from ConceptNet for the variables of P1.

P1: What kind of boy burns? A son-burn. (Binsted, 1996)
T1: What kind of <X3> <X4>? A <Y1>-<Y2>.

Table 1: Word relationships extracted from P1 using ConceptNet

Word Relationship For Readability
X3 ConceptuallyRelatedTo Y1 boy ConceptuallyRelatedTo son
X4 ConceptuallyRelatedTo Y1-0 burn ConceptuallyRelatedTo sun
Y1-0 CapableOf Y2 sun CapableOf burn

A compound word (word with a dash “-”) is also checked and marked if at least one of its

parts has an existing word relationship. From P1, the compound word relationship extracted is
Y1-0 IsAWord Y2 (sun IsAWord burn).

The extracted templates are then validated for usability. A template is usable if all of the word
relationships form a complete chain. If the chain is incomplete, the template cannot be used in
the generation phase since not all of the variables will be filled with possible values.

3.2.Using the Learned Templates in Generation
Generation of puns starts with a keyword input, which is tried with all of the available
templates, by substituting it on each variable that has the same POS tag. Word relationship
grouping is then performed. Given two variables, say X1 and Y4, there may be more than one
word relationship connecting these two variables, e.g., X1 IsA Y4 and X1
ConceptuallyRelatedTo Y4. A word relationship group is satisfied if at least one of the
word relationships in the group is satisfied. Consider the pun P3 and its word relationship
groupings shown in Table 2.

P3: How is a window like a headache? They are both panes. (Binsted, 1996)
T3: How is a <X3> like a <X5>? They are both <Y4>.

The possible word generator checks if the variables can be populated with values to satisfy

the word relationships starting with the keyword, while the possible word connector connects
the possible words together to form groups of variables to be used for a sentence. The surface
form generator takes the groups of variables and substitutes them to the slots in the template to
form the punning riddle, before passing to the surface realizer for output to the user.

455

Table 2: Word relationship groupings for P3
Word Relationship For Readability

X3 ConceptuallyRelatedTo Y4
Y4 ConceptuallyRelatedTo X3
Y4 PartOf X3

window ConceptuallyRelatedTo pane
pane ConceptuallyRelatedTo window
pane PartOf window

X5 ConceptuallyRelatedTo Y4-0
X5 IsA Y4-0
Y4-0 ConceptuallyRelatedTo X5

headache ConceptuallyRelatedTo pain
headache IsA pain
pain ConceptuallyRelatedTo headache

Y4-0 SoundsLike Y4 pain SoundsLike panes

Given the keyword “garbage”, the possible values for the variables of template T3 and the
sequence of their derivation from the linguistic resources are as follows:
�����������X5 ==> Y4-0 ==> Y4 ==> X3

Garbage ==> waste ==> waist ==> trunk

The word relationships that were satisfied and the filled template are shown in Table 3,
resulting in the T-Peg generated pun “How is a trunk like a garbage? They are both waists.”

Table 3: Filled template T3 for keyword “garbage”

Word Relationship Filled Template
X3 ConceptuallyRelatedTo Y4
Y4 ConceptuallyRelatedTo X3
Y4 PartOf X3

waist PartOf trunk

X5 ConceptuallyRelatedTo Y4-0
X5 IsA Y4-0
Y4-0 ConceptuallyRelatedTo X5

garbage IsA waste

Y4-0 SoundsLike Y4 waste SoundsLike waist

4. Translation Quality using Extracted Templates
TExt was trained with four sets of bilingual corpora containing a total of 163 sentence pairs.
Corpora#1-3, containing 49, 15 and 41 sentences, respectively, were created by the proponents
and verified by a linguist; they contain sentences that have similar structures so that templates
can be learned. Corpus #4, containing 58 sentences, was adapted from an essay given by the
Filipino Department of De La Salle University - Manila.

Using a Strict Chunk Alignment with Splitting (SCAS) approach in deriving templates from
sentences requires all tokens to be aligned and the number of chunks in the source to be equal
to that in the target. This resulted in learning more templates that are of good quality, as shown
in Table 4 (for Corpus #4), compared to the Loose Chunk Alignment approach (LCA).
Correctness refers to the actual templates and chunks learned as well as the proper alignment of
tokens in the source and target template or chunk. Notice that LCA has a high error rate, and
learning is not bi-directional as it did not learn the same number of templates and chunks.

Table 4: Test results for chunk alignment algorithms applied on Corpus #4

 LCA SCAS
English to Filipino
Total # of template pairs learned 5 13
(%) of correct template pairs 3 (60%) 13 (100%)
Total # of chunk pairs learned 110 29
(%) of correct chunk pairs 49 (44.5%) 29 (100%)
Filipino to English
Total # of template pairs learned 6 13
(%) of correct template pairs 2 (33.3%) 13 (100%)
Total # of chunk pairs learned 131 29
(%) of correct chunk pairs 64 (48.9%) 29 (100%)

456

The extracted templates also contained too many frequently occurring words which were
filtered to prevent learning templates that have small coverage during translation since they
contain only common words as constants. Table 5 shows the results of performing common
words filtering combined with SCAS for all four corpora. NCWF (no common words filtering)
generated fewer templates and more chunks. CWF (common words filtering) generated more
templates and fewer chunks which is preferable because templates are able to capture proper
sentence structures that preserve word order in the resulting translation. More templates would
also mean more candidates for refinement in subsequent training.

Table 5: Test results for common words filtering with strict chunk alignment algorithm

SCAS with NCWF CWF
Template Learning Algorithm STL STL STL + DTL

Total # of template pairs learned 59 73 119
Total # of chunk pairs learned 237 210 218

The last column in Table 5 shows the number of templates learned from Corpora #1-4 when
both similarity and difference template learning algorithms are used. The additional templates
were mostly derived from existing chunks (Nunez, 2007).

To determine the translation quality using the learned templates and chunks, Corpus #5
containing 30 sentences was derived from Corpora #1-4. Table 6 shows the number of
sentences that were translated using templates alone, chunks alone, word-for-word translation,
and combination of all three. The STL approach was able to match more templates to the input
text while the DTL approach utilizes more chunks. These results correspond to the training
results, where STL learned more templates and DTL learned more chunks.

Table 6: Using templates in the translation of Corpus #5

Table 7: Error rates in the translation of Corpora #5 and #6

 Corpus #5 Corpus #6
Approach WER (%) SER (%) BLEU WER (%) SER (%) BLEU

 English to Filipino Translation
STL + DTL 15.17 73.33 0.7126 89.90 100.00 0.0523
STL 13.49 60.00 0.7470 89.96 100.00 0.0517
DTL 43.25 86.67 0.4531 91.69 100.00 0.0299
 Filipino to English Translation
STL + DTL 21.85 63.33 0.6771 80.78 100.00 0.0334
STL 18.12 56.67 0.6990 83.19 100.00 0.0322
DTL 55.49 83.33 0.3455 85.46 100.00 0.0337

Table 7 shows the evaluated translation output of Corpora #5 and #6 (containing 126 sentence

pairs whose patterns and words do not match the training set). The automatic evaluation
methods used were word error rate (WER), sentence error rate (SER), and bilingual
evaluation understudy (BLEU). For Corpus #5, since STL was able to match more templates to

457

the input text, the translation is of better quality with lower error rates. In the translation of
Corpus #6, cases arise when no matching templates can be found for an input sentence. Chunks
are then used, resulting in poorer quality translation with 100% sentence error rate.

5. Quality of Puns Generated from Learned Templates
T-Peg was trained with a corpus of 39 punning riddles derived from JAPE (Binsted, 1996) and
The Crack-a-Joke Book (Webb, 1978). Each riddle generates one template, and of these, only
27 (69.2%) are usable. The unusable templates contain missing relationships due to two factors.
The phonetic lexicon (Unisyn) contains entries only for valid words and not for syllables. Thus,
in P4, the “house-wall” relationship is missing because “wal” is not found in Unisyn to
produce the word “wall”. The semantic analyzer (ConceptNet) is also unable to determine the
relationship between two words, for example, in P5, the “infantry-army” relationship.

P4: What nuts can you use to build a house? Wal-nuts. (Binsted, 1996)
P5: What part of the army could a baby join? The infant-ry. (Webb, 1978)

The usable templates were manually verified if they contain sufficient information in
capturing the wordplay. The rating used is based on the word relationships in the pun. 10
templates were chosen based on their completeness and correctness in capturing the most
crucial word relationships. The 10 templates received an average score of 4.0 out of 5, with
missing word relationships due to limitations of Unisyn and ConceptNet, for example, in P6,
between “heaviest” and “weight”; while in P7, between “tap” and “plumber” and the
syllable “ber” that was incorrectly classified as a valid word.

P6: Which bird can lift the heaviest weights? The crane. (Webb, 1978)
T6: Which <X1> can <X3> the heaviest <X6>? The <Y1>.

P7: What kind of fruit fixes taps? The plum-ber. (Binsted, 1996)
T7: What kind of <X3> <X4> taps? A <Y1>-<Y2>.

Table 8 lists sample puns in the training set and the corresponding generated puns. User
feedback gave an average score of 2.7 to the original puns, while the generated puns received
an average score of 2.13, showing that computer puns are almost at par with human-made puns.

Table 8: Examples of generated punning riddles

Training Examples Generated Punning Riddle by T-Peg
What do you call a lizard on the wall?
A rep-tile. (Binsted, 1996)

What do you call a movie on the floor?
A holly-wood..

What part of a fish weighs the most?
The scales. (Webb, 1978)

What part of a man lengthens the most?
The shadow.

What keys are furry?
Mon-keys. (Webb, 1978)

What verses are endless?
Uni - verses .

6. Conclusion
The works presented here explored the use of learning algorithms to automatically extract
templates from training examples provided by the user. TExt demonstrated that similarity and
difference bilingual translation templates can be extracted from an unannotated and untagged
corpus. The learning algorithm also performs template refinement and extracts chunks to
supplement the limited lexicon and for deriving additional templates. Further work on TExt
may involve semantic analysis of the words in the input sentences in order to select the most
appropriate translation for a given word that has different meanings depending on its context in
the sentence. The addition of a morphological analyzer for English and Filipino can also help
the alignment process of the system.

T-peg demonstrated that computers can be trained to be as humorous as humans by
automatically extracting patterns of human-created jokes and using these as templates for the

458

system to create its own jokes, utilizing various linguistic resources. Computer-generated jokes
can find application in human-computer dialog systems, to make the conversation and
interaction between the human and the computer sound more natural. Future work for T-Peg
involves exploring template refinement or merging, which could improve the quality of the
learned templates. Some form of manual intervention may also be added to increase the number
of usable templates by addressing the missing word relationships caused by limitations of the
external linguistic resources.

We are planning to explore automatic extraction of story patterns for use by our children story
generation system, Picture Books (Hong et al, 2008). The templates pair approach of TExt can
be used to present a basic story structure in different forms suitable for various reading age
groups. The approach of T-Peg in extracting and storing word relationships can be explored
further as a means of teaching vocabulary and related concepts to young readers.

References
Bautista, M., Fule, M., Gaw, K., and K.L Hernandez. 2004. SalinWika: An Example-Based

Machine Translation System Using Templates. Undergraduate Thesis. De La Salle
University, Manila.

Binsted, K. 1996. Machine Humour: An Implemented Model of Puns. Ph.D. Thesis. University
of Edinburgh.

Cicekli, I. and H.A. Güvenir. 2003. Learning Translation Templates from Bilingual Translation
Examples. Recent Advances in Example-Based Machine Translation, pp. 255-286. Kluwer
Publishers.

Dale, R. 1995. An Introduction to Natural Language Generation. Technical Report, Microsoft
Research Institute (MRI). Macquarie University, Australia.

Fitt, S. 2002. Unisyn Lexicon Release. http://www.cstr.ed.ac.uk/projects/unisyn/.
Go, K., Morga, M., Nunez, V. and F. Veto. 2006. TExt Translation: Template Extraction for a

Bidirectional English-Filipino Example-Based Machine Translation. Undergraduate
Thesis. De La Salle University, Manila.

Hong, B. 2008. Template-Based Pun Extractor and Generator. MSCS Thesis. De La Salle
University, Manila.

Hong, A., Siy, J.T., Solis, C. and E. Tabirao. 2008. Picture Books: An Automated Story
Generator. Ongoing Undergraduate Thesis. De La Salle University, Manila.

Jarmasz, M. and S. Szpakowicz. 2006. Roget’s Thesaurus – Electronic Lexical Knowledge Base
ELKB. http://www.nzdl.org/ELKB/.

Liu, H., P. Singh and I. Eslick. 2004. ConceptNet. http://web.media.mit.edu/~hugo/ conceptnet/.
Liu, H. 2003. MontyTagger. http://web.media.mit.edu/~hugo/montytagger/.
McTait, K. 2001. Linguistic Knowledge and Complexity in an EBMT System Based on

Translation Patterns. In MT Summit VIII, September 2001, Spain.
Muslea, I. 1999. Extraction Patterns for Information Extraction Tasks: A Survey. Proceedings

AAAI-99 Workshop on Machine Learning for Information Extraction.
Nunez, V. 2007. Combining Similarity and Difference Templates for a Bidirectional Example-

Based Machine Translation. MSCS Thesis. De La Salle University, Manila.
Ong E., Go, K., Morga, M., Nunez, V. and F. Veto. 2007. Extracting and Using Translation

Templates in an Example-Based Machine Translation System. Journal of Research in
Science, Computing, and Engineering, 4(3), 81-98. De La Salle University, Manila.

Ritchie, G., Manurung, R., Pain, H., Waller, A., and O’Mara, D. (2006). The STANDUP
Interactive Riddle Builder. In IEEE Intelligent Systems, 21(2), 67-69, March/April 2006.

Webb, K. 1978. The Crack-a-Joke Book. Puffin Books. London, England.
WordNet, 2006. WordNet: A Lexical Database for the English Language. Princeton University.

459

	all 1.pdf
	all 2.pdf
	all 3.pdf
	all 4.pdf
	all 5.pdf
	all 6.pdf
	all 7.pdf
	all 8.pdf

