1,505 research outputs found
Nonlinear Simulation of Drift Wave Turbulence
In a two-dimensional version of the modified Hasegawa-Wakatani (HW) model,
which describes electrostatic resistive drift wave turbulence, the resistive
coupling between vorticity and density does not act on the zonal components
(). It is therefore necessary to modify the HW model to treat the
zonal components properly. The modified equations are solved numerically, and
visualization and analysis of the solutions show generation of stable zonal
flows, through conversion of turbulent kinetic energy, and the consequent
turbulence and transport suppression. It is demonstrated by comparison that the
modification is essential for generation of zonal flows.Comment: Accepted for publication in the Proceedings of the CSIRO/COSNet
Workshop on Turbulence and Coherent Structures, Canberra, Australia, 10-13
January 2006 (World Scientific, in press, eds. J.P. Denier and J.S.
Frederiksen): 12 pages, 6 figure
Fiber laser development for LISA
We have developed a linearly-polarized Ytterbium-doped fiber ring laser with
single longitudinal-mode output at 1064nm for LISA and other space
applications. Single longitudinal-mode selection was achieved by using a fiber
Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a
frequency-reference within our ring laser. Our laser exhibits comparable low
frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a
fiber-coupled phase modulator as a frequency actuator, the laser frequency can
be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring
laser is promising for space applications where robustness of fiber optics is
desirable.Comment: Proceedings for 8th Edoardo Amaldi Conference on Gravitational Waves,
New York, (2009). To be published in Journal of Physics Conference Series
Pieri's Formula for Generalized Schur Polynomials
Young's lattice, the lattice of all Young diagrams, has the
Robinson-Schensted-Knuth correspondence, the correspondence between certain
matrices and pairs of semi-standard Young tableaux with the same shape. Fomin
introduced generalized Schur operators to generalize the
Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur
operators are generalizations of semi-standard Young tableaux. We define a
generalization of Schur polynomials as expansion coefficients of generalized
Schur operators. We show that the commutating relation of generalized Schur
operators implies Pieri's formula to generalized Schur polynomials
Fiber Laser Development for LISA
We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable
Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements
We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log"
Gyrokinetic simulation of entropy cascade in two-dimensional electrostatic turbulence
Two-dimensional electrostatic turbulence in magnetized weakly-collisional
plasmas exhibits a cascade of entropy in phase space [Phys. Rev. Lett. 103,
015003 (2009)]. At scales smaller than the gyroradius, this cascade is
characterized by the dimensionless ratio D of the collision time to the eddy
turnover time measured at the scale of the thermal Larmor radius. When D >> 1,
a broad spectrum of fluctuations at sub-Larmor scales is found in both position
and velocity space. The distribution function develops structure as a function
of v_{perp}, the velocity coordinate perpendicular to the local magnetic field.
The cascade shows a local-scale nonlinear interaction in both position and
velocity spaces, and Kolmogorov's scaling theory can be extended into phase
space.Comment: 8 pages, 10 figures, Conference paper presented at 2009 Asia-Pacific
Plasma Theory Conference. Ver.2 includes corrected typos & updated reference
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars
Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source
Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning
An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports
Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers
We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers
- …
