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PIERI’S FORMULA
FOR GENERALIZED SCHUR POLYNOMIALS

NUMATA, YASUHIDE

Abstract. Young’s lattice, the lattice of all Young diagrams,
has the Robinson-Schensted-Knuth correspondence, the correspon-
dence between certain matrices and pairs of semi-standard Young
tableaux with the same shape. Fomin introduced generalized Schur
operators to generalize the Robinson-Schensted-Knuth correspon-
dence. In this sense, generalized Schur operators are generaliza-
tions of semi-standard Young tableaux. We define a generalization
of Schur polynomials as expansion coefficients of generalized Schur
operators. We show that the commutating relation of generalized
Schur operators implies Pieri’s formula to generalized Schur poly-
nomials.

1. Introduction

Young’s lattice is a prototypical example of a differential poset which
was first defined by Stanley [9, 10]. The Robinson correspondence is a
correspondence between permutations and pairs of standard tableaux
whose shapes are the same Young diagram. This correspondence was
generalized for differential posets or dual graphs (generalizations of
differential posets [3]) by Fomin [2, 4]. (See also [8].)

Young’s lattice also has The Robinson-Schensted-Knuth correspon-
dence, the correspondence between certain matrices and pairs of semi-
standard tableaux. Fomin [5] introduced operators called generalized
Schur operators, and generalized the Robinson-Schensted-Knuth corre-
spondence for generalized Schur operators. We define a generalization
of Schur polynomials as expansion coefficients of generalized Schur op-
erators.

A complete symmetric polynomial is a Schur polynomial associated
with a Young diagram consisting of only one row. Schur polynomials
satisfy Pieri’s formula, the formula describing the product of a com-
plete symmetric polynomial and a Schur polynomial as a sum of Schur
polynomials:

hi(t1, . . . , tn)sλ(t1, . . . , tn) =
∑

µ

sµ(t1, . . . , tn),
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2 NUMATA, Y.

where the sum is over all µ’s that are obtained from λ by adding i boxes,
with no two in the same column, hi is the i-th complete symmetric
polynomial, and sλ is the Schur polynomial associated with λ.

In this paper, we generalize Pieri’s formula to generalized Schur poly-
nomials.

Remark 1.1. Lam introduced a generalization of the Boson-Fermion
correspondence [6]. In the paper, he also showed Pieri’s and Cauchy’s
formulae for some families of symmetric functions in the context of
Heisenberg algebras. Some important families of symmetric functions,
e.g., Schur functions, Hall-Littlewood polynomials, Macdonald polyno-
mials and so on, are examples of them. He proved Pieri’s formula using
essentially the same method as the one in this paper. Since the assump-
tions of generalized Schur operators are less than those of Heisenberg
algebras, our polynomials are more general than his; e.g., some of our
polynomials are not symmetric. An example of generalized Schur oper-
ators which provides non-symmetric polynomials is in Section 4.3. See
also Remark 2.8 for the relation between [6] and this paper.

This paper is organized as follows: In Section 2.1, we recall gener-
alized Schur operators, and define generalized Schur polynomials. We
also define a generalization of complete symmetric polynomials, called
weighted complete symmetric polynomials, in Section 2.2. In Section
3, we show Pieri’s formula for these polynomials (Theorem 3.2). We
also see that Theorem 3.2 becomes simple for special parameters, and
that weighted complete symmetric polynomials are written as linear
combinations of generalized Schur polynomials in a special case. Other
examples are shown in Section 4.

2. Definition

We introduce two types of polynomials in this section. One is a
generalization of Schur polynomials. The other is a generalization of
complete symmetric polynomials.

2.1. Generalized Schur Polynomials. First we recall the general-
ized Schur operators defined by Fomin [5]. We define a generalization
of Schur polynomials as expansion coefficients of generalized Schur op-
erators.

Let K be a field of characteristic zero that contains all formal power
series in variables t, t′, t1, t2, . . . Let Vi be finite-dimensional K-vector
spaces for all i ∈ Z. Fix a basis Yi of each Vi so that Vi = KYi. Let

Y =
⋃

i Yi, V =
⊕

i Vi and V̂ =
∏

i Vi, i.e., V is the vector space

consisting of all finite linear combinations of elements of Y and V̂ is
the vector space consisting of all linear combinations of elements of Y .
The rank function on V mapping v ∈ Vi to i is denoted by ρ. We say
that Y has a minimum ∅ if Yi = ∅ for i < 0 and Y0 = {∅}.
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For a sequence {Ai} and a formal variable x, we write A(x) for the
generating function

∑
i≥0 Aix

i.

Definition 2.1. Let Di and Ui be linear maps on V for nonnegative
integers i ∈ N. We call D(t1) · · ·D(tn) and U(tn) · · ·U(t1) generalized
Schur operators with {am} if the following conditions are satisfied:

• {am} is a sequence of K.
• Ui satisfies Ui(Vj) ⊂ Vj+i for all j.
• Di satisfies Di(Vj) ⊂ Vj−i for all j.
• The equation D(t′)U(t) = a(tt′)U(t)D(t′) holds.

In general, D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are not linear opera-

tors on V but linear operators from V to V̂ .

Let 〈 , 〉 be the natural pairing, i.e., the bilinear form on V̂ × V
such that 〈

∑
λ∈Y aλλ,

∑
µ∈Y bµµ〉 =

∑
λ∈Y aλbλ. For generalized Schur

operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1), U∗
i and D∗

i denote the
maps obtained from the adjoints of Ui and Di with respect to 〈 , 〉 by
restricting to V , respectively. For all i, U∗

i and D∗
i are linear maps on

V satisfying U∗
i (Vj) ⊂ Vj−i and D∗

i (Vj) ⊂ Vj+i. It follows by definition
that

〈v, Uiw〉 = 〈w,U∗
i v〉, 〈v,Diw〉 = 〈w,D∗

i v〉

for v, w ∈ V . We write U∗(t) and D∗(t) for
∑

U∗
i ti and

∑
D∗

i t
i. It

follows by definition that

〈U(t)µ, λ〉 = 〈U∗(t)λ, µ〉, 〈D(t)µ, λ〉 = 〈D∗(t)λ, µ〉
for λ, µ ∈ Y . The equation D(t′)U(t) = a(tt′)U(t)D(t′) implies
the equation U∗(t′)D∗(t) = a(tt′)D∗(t)U∗(t′). Hence U∗(t1) · · ·U∗(tn)
and D∗(tn) · · ·D∗(t1) are generalized Schur operators with {am} when
D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are.

Definition 2.2. Let D(t1) · · ·D(tn) and U(tn) · · ·U(t1) be generalized
Schur operators with {am}. For v ∈ V and µ ∈ Y , sD

v,µ(t1, . . . , tn) and
sµ,v

U (t1, . . . , tn) are respectively defined by

sD
v,µ(t1, . . . , tn) = 〈D(t1) · · ·D(tn)v, µ〉,

sµ,v
U (t1, . . . , tn) = 〈U(tn) · · ·U(t1)v, µ〉.

We call these polynomials sD
v,µ(t1, . . . , tn) and sµ,v

U (t1, . . . , tn) generalized
Schur polynomials.

Remark 2.3. Generalized Schur polynomials sD
v,µ(t1, . . . , tn) are sym-

metric in the case when D(t)D(t′) = D(t′)D(t), but not symmetric
in general. Similarly, generalized Schur polynomials sµ,v

U (t1, . . . , tn) are
symmetric if U(t)U(t′) = U(t′)U(t).

If U0 (resp. D0) is the identity map on V , generalized Schur polyno-
mials sD

v,µ(t1, . . . , tn) (resp. sµ,v
U (t1, . . . , tn)) are quasi-symmetric. In [1],

Bergeron, Mykytiuk, Sottile and van Willigenburg considered graded
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Figure 1. Young’s lattice

representations of the algebra of noncommutative symmetric functions
on the Z-free module whose basis is a graded poset, and gave a Hopf-
morphism from a Hopf algebra generated by intervals of the poset to
the Hopf algebra of quasi-symmetric functions.

Example 2.4. Our prototypical example is Young’s lattice Y that con-
sists of all Young diagrams. Let Y be Young’s lattice Y, V the K-vector
space KY whose basis is Y, and ρ the ordinary rank function mapping
a Young diagram λ to the number of boxes in λ. Young’s lattice Y
has a minimum ∅, the Young diagram with no boxes. We call a skew
Young diagram µ/λ a horizontal strip if µ/λ has no two boxes in the
same column. Define Ui by Ui(µ) =

∑
λ λ, where the sum is over all

λ’s that are obtained from µ by adding a horizontal strip consisting of
i boxes; and define Di by Di(λ) =

∑
µ µ, where the sum is over all µ’s

that are obtained from λ by removing a horizontal strip consisting of i
boxes. For example,

D27−→ +

U27−→ + + + .

(See also Figure 1, the graph of D1 (U1) and D2 (U2).)
In this case, D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur

operators with {am = 1}. Both sD
λ,µ(t1, . . . , tn) and sλ,µ

U (t1, . . . , tn) are
equal to the skew Schur polynomial sλ/µ(t1, . . . , tn) for λ, µ ∈ Y. For
example, since

D(t2) = + t2 + t2 + t22

D(t1)D(t2) = + t1 + t1 + t21

+ t2( + t1 ) + t2( + t1 + t21∅)

+ t22( + t1∅),

sD
(2,1),∅(t1, t2) = s(2,1)(t1, t2) = t21t2 + t1t

2
2.
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Example 2.5. Our second example is the polynomial ring K[x] with a
variable x. Let V be K[x] and ρ the ordinary rank function mapping
a monomial axn to its degree n. In this case, dim Vi = 1 for all i ≥ 0
and dim Vi = 0 for i < 0. Hence its basis Y is identified with N and
has a minimum c0, a nonzero constant. Define Di and Ui by ∂i

i!
and

xi

i!
, where ∂ is the partial differential operator in x. Then D(t) and

U(t) are exp(t∂) and exp(tx). Since D(t) and U(t) satisfy D(t)U(t′) =
exp(tt′)U(t′)D(t), D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized
Schur operators with {am = 1

m!
}. In general, for differential posets, we

can construct generalized Schur operators in a similar manner.
Since ∂ and x commute with t, the following equations hold:

D(t1) · · ·D(tn) = exp(∂t1) · · · exp(∂tn) = exp(∂(t1 + · · · + tn)),

U(tn) · · ·U(t1) = exp(xtn) · · · exp(xt1) = exp(x(t1 + · · · + tn)).

It follows from direct calculations that

exp(∂(t1 + · · · + tn))cix
i =

i∑
j=0

(t1 + · · · + tn)j

j!

i!

(i − j)!
cix

i−j

=
i∑

j=0

i!(t1 + · · · + tn)jci

(i − j)!j!ci−j

ci−jx
i−j,

exp(x(t1 + · · · + tn))cix
i =

∑
j

(t1 + · · · + tn)jxj

j!
cix

i

=
∑

j

(t1 + · · · + tn)jci

j!ci+j

ci+jx
i+j.

Hence it follows that

sD
ci+jxi+j ,cixi(t1, . . . , tn) =

(i + j)!

i!j!

ci+j

ci

(t1 + . . . + tn)j

s
ci+jxi+j ,cix

i

U (t1, . . . , tn) =
1

j!

ci

ci+j

(t1 + . . . + tn)j,

if we take {cix
i} as the basis Y .

If ci = 1 for all i, then sD
xi+j ,xi(t1, . . . , tn) = (i+j)!

i!j!
(t1 + . . . + tn)j, and

sxi+j ,xi

U (t1, . . . , tn) = 1
j!
(t1 + . . . + tn)j.

Lemma 2.6. Generalized Schur polynomials satisfy the following equa-
tions:

sD
λ,µ(t1, . . . , tn) = sλ,µ

D∗ (t1, . . . , tn),

sλ,µ
U (t1, . . . , tn) = sU∗

λ,µ(t1, . . . , tn)
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for λ, µ ∈ Y . Generalized Schur polynomials also satisfy the following
equations:

sD
v,µ(t1, . . . , tn) =

∑
ν∈Y

〈v, ν〉sν,µ
D∗(t1, . . . , tn),

sµ,v
D∗(t1, . . . , tn) =

∑
ν∈Y

〈v, ν〉sD
µ,ν(t1, . . . , tn),

sU∗

v,µ(t1, . . . , tn) =
∑
ν∈Y

〈v, ν〉sν,µ
U (t1, . . . , tn),

sµ,v
U (t1, . . . , tn) =

∑
ν∈Y

〈v, ν〉sU∗

µ,ν(t1, . . . , tn)

for µ ∈ Y , v ∈ V .

Proof. It follows by definition that

sD
λ,µ(t1, . . . , tn) = 〈D(t1) · · ·D(tn)λ, µ〉

= 〈D∗(tn) · · ·D∗(t1)µ, λ〉 = sλ,µ
D∗ (t1, . . . , tn).

Similarly, we have sλ,µ
U (t1, . . . , tn) = sU∗

λ,µ(t1, . . . , tn). The other formulae
follow from v =

∑
ν∈Y 〈ν, v〉ν for v ∈ V . ¤

Remark 2.7. Rewriting the generalized Cauchy identity [5, 1.4. Corol-
lary] with our notation, we obtain a Cauchy identity for generalized
Schur polynomials:∑

ν∈Y

sD
ν,µ(t1, . . . , tn)sν,v

U (t′1, . . . , t
′
n)

=
∏
i,j

a(tit
′
j)

∑
κ∈Y

sµ,κ
U (t′1, . . . , t

′
n)sD

v,κ(t1, . . . , tn)

for v ∈ V , µ ∈ Y .

Remark 2.8. In this remark, we construct operators Bl from general-
ized Schur operators D(t1) · · ·D(tn) and U(tn) · · ·U(t1). These oper-
ators Bl are closely related to the results of Lam [6]. Furthermore
we can construct other generalized Schur operators D(t1) · · ·D(tn) and
U ′(tn) · · ·U ′(t1) from Bl.

Let D(t1) · · ·D(tn) and U(tn) · · ·U(t1) be generalized Schur opera-
tors with {am}. For a partition λ ` l, we define zλ by zλ = 1m1(λ)m1(λ)!·
2m2(λ)m2(λ)! · · · , where mi(λ) = |{j|λj = i}|. Let U0 = D0 = I, where
I is the identity map. For positive integers l, we inductively define bl,
Bl and B−l by

bl =al −
∑

λ

bλ

zλ

,

Bl =Dl −
∑

λ

Bλ

zλ

,
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B−l =Ul −
∑

λ

B−λ

zλ

,

where bλ = bλ1 · bλ2 · · · , Bλ = Bλ1 · Bλ2 · · · , B−λ = B−λ1 · B−λ2 · · · and
the sums are over all partitions λ of l such that λ1 < l. Let bl 6= 0 for
any l. It follows from direct calculations that

[Bl, B−l] = l · bl · I,

[Bl, B−k] = 0

for positive integers l 6= k. If Ui and Di respectively commute with
Uj and Dj for all i, j, then {Bl, B−l|l ∈ Z>0} generates the Heisenberg
algebra. In this case, we can apply the results of Lam [6]. See also Re-
mark 2.13 for the relation between his complete symmetric polynomi-
als hi[bm](t1, . . . , tn) and our weighted complete symmetric polynomials

h
{am}
i (t1, . . . , tn).
For a partition λ ` l, let sgn(λ) denote (−1)

P

i(λi−1), where the sum
is over all i’s such that λi > 0. Although Ui and Di do not com-
mute with Uj and Dj, we can define dual generalized Schur operators
D(t1) · · ·D(tn) and U ′(tn) · · ·U ′(t1) with {a′

m} by

a′
l =

∑
λ

sgn(λ)bλ

zλ

,

U ′
−l =

∑
λ

sgn(λ)B−λ

zλ

,

where the sums are over all partitions λ of l. In this case, it follows
from direct calculations that a(t) · a′(−t) = 1.

2.2. Weighted Complete Symmetric Polynomials. Next we in-
troduce a generalization of complete symmetric polynomials. We define
weighted symmetric polynomials inductively.

Definition 2.9. Let {am} be a sequence of elements of K. We define

the i-th weighted complete symmetric polynomial h
{am}
i (t1, . . . , tn) to

be the coefficient of ti in a(t1t) · · · a(tnt).

By definition, for each i, the i-th weighted complete symmetric poly-

nomial h
{am}
i (t1, . . . , tn) is a homogeneous symmetric polynomial of de-

gree i.

Remark 2.10. For a sequence {am} of elements of K, the i-th weighted

complete symmetric polynomial h
{am}
i (t1, . . . , tn) coincides with the

polynomial defined by

h
{am}
i (t1, . . . , tn) =


ait

i
1 (for n = 1),

i∑
j=0

h
{am}
j (t1, . . . , tn−1)h

{am}
i−j (tn) (for n > 1).

(1)
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Example 2.11. When am equals 1 for each m, a(t) =
∑

i t
i = 1

1−t
. In

this case, h
{1,1,...}
j (t1, . . . , tn) equals the complete symmetric polynomial

hj(t1, . . . , tn).

Example 2.12. When am equals 1
m!

for each m,
∑

j h
{ 1

m!
}

j (t) = exp(t) =

a(t) and h
{ 1

m!
}

j (t1, . . . , tn) = 1
j!
(t1 + · · · + tn)j.

Remark 2.13. In this remark, we compare the complete symmetric
polynomials hi[bm](t1, . . . , tn) of Lam [6] and our weighted complete

symmetric polynomials h
{am}
i (t1, . . . , tn). Let {bm} be a sequence of

elements of K. The polynomials hi[bm](t1, . . . , tn) of Lam are defined
by

hi[bm](t1, . . . , tn) =
∑
λ`i

bλpλ(t1, . . . , tn)

zλ

,

where bλ = bλ1 ·bλ2 · · · , pλ(t1, . . . , tn) = pλ1(t1, . . . , tn)·pλ2(t1, . . . , tn) · · ·
and pi(t1, . . . , tn) = ti1+· · ·+tin. These polynomials satisfy the equation

hi[bm](t1, . . . , tn) =
i∑

j=0

hj[bm](t1, . . . , tn−1)hi−j[bm](tn).

Let ai =
∑

λ`i
bλ

zλ
. Then it follows hi[bm](t1) = ait

i. Hence

hi[bm](t1, . . . , tn) = h
{am}
i (t1, . . . , tn).

3. Main Results

In this section, we show some properties of generalized Schur poly-
nomials and weighted complete symmetric polynomials.

Throughout this section, let D(t1) · · ·D(tn) and U(tn) · · ·U(t1) be
generalized Schur operators with {am}.

3.1. Main Theorem. In Proposition 3.1, we describe the commuting
relation of Ui and D(t1) · · ·D(tn), proved in Section 3.3. This relation
implies Pieri’s formula for our polynomials (Theorem 3.2), the main
result in this paper. It also follows from this relation that the weighted
complete symmetric polynomials are written as linear combinations of
generalized Schur polynomials when Y has a minimum (Proposition
3.5).

First we describe the commuting relation of Ui and D(t1) · · ·D(tn).
We prove it in Section 3.3.

Proposition 3.1. The equations

D(t1) · · ·D(tn)Ui =
i∑

j=0

h
{am}
i−j (t1, . . . , tn)UjD(t1) · · ·D(tn),(2)
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DiU(tn) · · ·U(t1) =
i∑

j=0

h
{am}
i−j (t1, . . . , tn)U(tn) · · ·U(t1)Dj,(3)

U∗
i D∗(tn) · · ·D∗(t1) =

i∑
j=0

h
{am}
i−j (t1, . . . , tn)D∗(tn) · · ·D∗(t1)U

∗
j ,(4)

U∗(t1) · · ·U∗(tn)D∗
i =

i∑
j=0

h
{am}
i−j (t1, . . . , tn)D∗

jU
∗(t1) · · ·U∗(tn).(5)

hold for all i.

These equations imply the following main theorem.

Theorem 3.2 (Pieri’s formula). For each µ ∈ Yk and each v ∈ V ,
generalized Schur polynomials satisfy

sD
Uiv,µ(t1, . . . , tn) =

i∑
j=0

h
{am}
i−j (t1, . . . , tn)

∑
ν∈Yk−j

〈Ujν, µ〉sD
v,ν(t1, . . . , tn).

Proof. It follows from Proposition 3.1 that

〈D(t1) · · ·D(tn)Uiv, µ〉 = 〈
i∑

j=0

h
{am}
i−j (t1, . . . , tn)UjD(t1) · · ·D(tn)v, µ〉

=
i∑

j=0

h
{am}
i−j (t1, . . . , tn)〈UjD(t1) · · ·D(tn)v, µ〉

for v ∈ V and µ ∈ Y . This says

sD
Uiv,µ(t1, . . . , tn)

=
i∑

j=0

h
{am}
i−j (t1, . . . , tn)

∑
ν∈Yk−j

〈Ujν, µ〉sD
v,ν(t1, . . . , tn).

¤

This formula becomes simple in the case when v ∈ Y .

Corollary 3.3. For each λ, µ ∈ Y , generalized Schur polynomials sat-
isfy

sD
Uiλ,µ(t1, . . . , tn) =

i∑
j=0

h
{am}
i−j (t1, . . . , tn) · sλ,U∗

j µ

D∗ (t1, . . . , tn).

Proof. It follows from Theorem 3.2 that

sD
Uiλ,µ(t1, . . . , tn) =

i∑
j=0

h
{am}
i−j (t1, . . . , tn)

∑
ν∈Y

〈Ujν, µ〉sD
λ,ν(t1, . . . , tn).
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Lemma 2.6 implies∑
ν∈Y

〈Ujν, µ〉sD
λ,ν(t1, . . . , tn) =

∑
ν∈Y

〈ν, U∗
j µ〉sD

λ,ν(t1, . . . , tn)

= s
λ,U∗

j µ

D∗ (t1, . . . , tn).

Hence

sD
Uiλ,µ(t1, . . . , tn) =

i∑
j=0

h
{am}
i−j (t1, . . . , tn) · sλ,U∗

j µ

D∗ (t1, . . . , tn).

¤
If Y has a minimum ∅, Theorem 3.2 implies the following corollary.

Corollary 3.4. Let Y have a minimum ∅. For all v ∈ V , the following
equations hold:

sD
Uiv,∅(t1, . . . , tn) = u0 · h{am}

i (t1, . . . , tn) · sD
v,∅(t1, . . . , tn),

where u0 is the element of K that satisfies U0∅ = u0∅.

In the case when Y has a minimum ∅, weighted complete symmetric
polynomials are written as linear combinations of generalized Schur
polynomials.

Proposition 3.5. Let Y have a minimum ∅. The following equations
hold for all i ≥ 0:

sD
Ui∅,∅(t1, . . . , tn) = dn

0u0 · h{am}
i (t1, . . . , tn),

where d0, u0 are the elements of K that satisfy D0∅ = d0∅ and U0∅ =
u0∅.

Proof. By definition, sD
∅,∅(t1, . . . , tn) is dn

0 . Hence it follows from Corol-
lary 3.4 that

sD
Ui∅,∅(t1, . . . , tn) = u0h

{am}
i (t1, . . . , tn)dn

0 .

¤
Example 3.6. In the prototypical example Y (Example 2.4), for λ ∈ Y,
Uiλ is the sum of all Young diagrams obtained from λ by adding a
horizontal strip consisting of i boxes. Hence sD

Uiλ,∅(t1, . . . , tn) equals∑
ν sν , where the sum is over all ν’s that are obtained from λ by

adding a horizontal strip consisting of i boxes. On the other hand,

u0 is 1, and h
{1,1,1,...}
i (t1, . . . , tn) is the i-th complete symmetric polyno-

mial hi(t1, . . . , tn) (Example 2.11). Thus Corollary 3.4 is nothing but
the classical Pieri’s formula. Theorem 3.2 is Pieri’s formula for skew
Schur polynomials; for a skew Young diagram λ/µ and i ∈ N,∑

κ

sκ/µ(t1, . . . , tn) =
i∑

j=0

∑
ν

hi−j(t1, . . . , tn)sλ/ν(t1, . . . , tn),
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where the first sum is over all κ’s that are obtained from λ by adding a
horizontal strip consisting of i boxes; the last sum is over all ν’s that are
obtained from µ by removing a horizontal strip consisting of j boxes.

In this example, Proposition 3.5 says that the Schur polynomial s(i)

corresponding to Young diagram with only one row equals the complete
symmetric polynomial hi.

Example 3.7. In the second example N (Example 2.5), Proposition 3.5

says that the constant term of exp(∂(t1 + · · ·+tn)) · xi

i!
equals (t1+···+tn)i

i!
.

3.2. Some Variations of Pieri’s Formula. In this section, we show
some variations of Pieri’s formula for generalized Schur polynomials,
i.e., we show Pieri’s formula not only for sD

λ,µ(t1, . . . , tn) but also for

sλ,µ
U (t1, . . . , tn), sλ,µ

D∗ (t1, . . . , tn) and sU∗

λ,µ(t1, . . . , tn).

Theorem 3.8 (Pieri’s formula). For each µ ∈ Yk and each v ∈ V ,
generalized Schur polynomials satisfy the following equations:∑

κ∈Y

〈Diκ, µ〉sκ,v
U (t1, . . . , tn)

=
i∑

j=0

h
{am}
i−j (t1, . . . , tn)s

µ,Djv
U (t1, . . . , tn),

sU∗

D∗
i v,µ(t1, . . . ,tn)

=
i∑

j=0

h
{am}
i−j (t1, . . . , tn)

∑
ν∈Yk−j

〈D∗
jν, µ〉sU∗

v,ν(t1, . . . , tn),

∑
κ∈Y

〈U∗
i κ, µ〉sκ,v

D∗(t1, . . . , tn)

=
i∑

j=0

h
{am}
i−j (t1, . . . , tn)s

µ,U∗
j v

D∗ (t1, . . . , tn).

Proof. Applying Theorem 3.2 to U∗(t1) · · ·U∗(tn) and D∗(tn) · · ·D∗(t1),
we obtain

sU∗

D∗
i v,µ(t1, . . . , tn) =

i∑
j=0

h
{am}
i−j (t1, . . . , tn)

∑
ν∈Yk−j

〈D∗
jν, µ〉sU∗

v,ν(t1, . . . , tn).

It follows from Proposition 3.1 that

〈DiU(tn) · · ·U(t1)v, µ〉 = 〈
i∑

j=0

h
{am}
i−j (t1, . . . , tn)U(tn) · · ·U(t1)Djv, µ〉

for v ∈ V and µ ∈ Y . This equation says∑
κ∈Y

〈Diκ, µ〉sκ,v
U (t1, . . . , tn) =

i∑
j=0

h
{am}
i−j (t1, . . . , tn)s

µ,Djv
U (t1, . . . , tn).
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For generalized Schur operators U∗(t1) · · ·U∗(tn) and D∗(tn) · · ·D∗(t1),
this equation says∑

κ∈Y

〈U∗
i κ, µ〉sκ,v

D∗(t1, . . . , tn) =
i∑

j=0

h
{am}
i−j (t1, . . . , tn)s

µ,U∗
j v

D∗ (t1, . . . , tn).

¤

Corollary 3.9. For all v ∈ V , the following equations hold:

sU∗

D∗
i v,∅(t1, . . . , tn) = d0 · h{am}

i (t1, . . . , tn) · sU∗

v,∅(t1, . . . , tn),

where d0 is the element of K that satisfies D0∅ = d0∅.

Proof. We obtain this proposition from Theorem 3.4 by applying to
generalized Schur operators U∗(t1, . . . , tn) and D∗(t1, . . . , tn). ¤

Proposition 3.10. Let Y have a minimum ∅. Then

sU∗

D∗
i ∅,∅(t1, . . . , tn) = un

0d0 · h{am}
i (t1, . . . , tn),

where u0 and d0 are the elements of K that satisfy D0∅ = d0∅ and
U0∅ = u0∅.

Proof. We obtain this proposition by applying Theorem 3.5 to gener-
alized Schur operators U∗(t1) · · ·U∗(tn) and D∗(tn) · · ·D∗(t1). ¤

3.3. Proof of Proposition 3.1. In this section, we prove Proposition
3.1.

First, we prove the equation (2). The other equations follow from
the equation (2).

Proof. Since D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur

operators with {am}, the equations D(t)Ui =
∑i

j=0 ajt
jUi−jD(t) hold

for all integers i. Hence D(t1) · · ·D(tn)Ui is written as a K-linear com-
bination of UjD(t1) · · ·D(tn). We write Hi,j(t1, . . . , tn) for the coeffi-
cient of UjD(t1) · · ·D(tn) in D(t1) · · ·D(tn)Ui.

It follows from the equation D(t)Ui =
∑i

j=0 ajt
jUi−jD(t) that

Hi,i−j(t1) = ajt
j
1(6)

for 0 ≤ j ≤ i.
We apply the relation (6) to D(tn) and Ui to have

D(t1) · · ·D(tn−1)D(tn)Ui =
i∑

j=0

ai−jt
i−j
n D(t1) · · ·D(tn−1)UjD(tn).

Since D(t1) · · ·D(tn−1)Ui =
∑

j Hi,j(t1, . . . , tn−1)UjD(t1) · · ·D(tn−1) by

the definition of Hi,j(t1, . . . , tn−1), we have the equation

D(t1) · · ·D(tn−1)D(tn)Ui
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=
i∑

k=0

i∑
j=k

ai−jt
i−j
n Hj,k(t1, . . . , tn−1)UkD(t1) · · ·D(tn).

Since D(t1) · · ·D(tn)Ui equals
∑i

k=0 Hi,k(t1, . . . , tn)UkD(t1) · · ·D(tn)
by definition, the equation

i∑
k=0

i∑
j=k

ai−jt
i−j
n Hj,k(t1, . . . , tn−1)UkD(t1) · · ·D(tn)

=
i∑

k=0

Hi,k(t1, . . . , tn)UkD(t1) · · ·D(tn)

holds. Hence the equation

i∑
j=k

ai−jt
i−j
n Hj,k(t1, . . . , tn−1) = Hi,k(t1, . . . , tn)(7)

holds.
We claim that Hi+k,k(t1, . . . , tn) does not depend on k. It follows

from this relation (7) that

Hk+l,k(t1, . . . , tn) =
k+l∑
j=k

ak+l−jt
k+l−j
n Hj,k(t1, . . . , tn−1)

=
l∑

j′=0

ak+l−(j′+k)t
k+l−(j′+k)
n Hj′+k,k(t1, . . . , tn−1)

=
l∑

j′=0

al−j′t
l−j′

n Hj′+k,k(t1, . . . , tn−1).

Since the monomials al−j′t
l−j′
n do not depend on k, the equations

H(i−k)+k,k(t1, . . . , tn) = H(i−k)+k′,k′(t1, . . . , tn)

hold if the equations Hk+j,k(t1, . . . , tn−1) = Hk′+j,k′(t1, . . . , tn−1) hold
for all k, k′ and j ≤ i − k. In fact, since Hi+k,k(t1) equals ait

i
1,

Hi+k,k(t1) does not depend on k. Hence it follows inductively that
Hi+k,k(t1, . . . , tn) does not depend on k, either. Hence we may write

H̃i−j(t1, . . . , tn) for Hi,j(t1, . . . , tn).
It follows from the equations (6) and (7) that{

H̃i(t1) = ait
i
1 (for n = 1),

H̃i(t1, . . . , tn) =
∑i

k=0 H̃i−k(t1, . . . , tn−1)H̃k(tn) (for n > 1).

Since H̃i(t1, . . . , tn) equals the i-th weighted complete symmetric poly-

nomial h
{am}
i (t1, . . . , tn), we have the equation (2).

We obtain the equation (4) from the equation (2) by applying ∗.
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Since D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur opera-
tors with {am}, U∗(t1) · · ·U∗(tn) and D∗(tn) · · ·D∗(t1) are also general-
ized Schur operators with {am}. Applying the equation (4) Proposition
3.1 to U∗(t1) · · ·U∗(tn) and D∗(tn) · · ·D∗(t1), we obtain the equation
(3) and (5), respectively.

Hence Proposition 3.1 follows. ¤

4. More Examples

In this section, we consider some examples of generalized Schur op-
erators.

4.1. Shifted Shapes. This example is the same as [5, Example 2.1].
Let Y be the set of shifted shapes, i.e.,

Y =
{
{(i, j) ∈ N2|i ≤ j ≤ λi + i}

∣∣λ = (λ1 > λ2 > · · · ), λi ∈ N
}

.

For λ ⊂ ν ∈ Y , let cc0(λ \ ν) denote the number of connected com-
ponents of λ \ ν that do not intersect with the main diagonal, and
cc(λ \ ν) the number of connected components of λ \ ν. For example,
let λ = (7, 5, 3, 2) and µ = (5, 4, 2). In this case, λ\ν is the set of boxes
◦ and • in

• •
•

◦
◦ ◦

.

Since the component of the boxes ◦ intersects with the main diagonal
at (4, 4), cc0(λ \ ν) = 1 and cc(λ \ ν) = 2.

For λ ∈ Y , Di are defined by

Diλ =
∑

ν

2cc0(λ\ν)ν,

where the sum is over all ν’s that are obtained from λ by removing i
boxes, with no two box in the same diagonal.

For λ ∈ Y , Ui are defined by

Uiλ =
∑

µ

2cc(µ\λ)µ,

where the sum is over all µ’s that are obtained from λ by adding i-
boxes, with no two box in the same diagonal.

In this case, since D(t) and U(t) satisfy

D(t′)U(t) =
1 + tt′

1 − tt′
U(t)D(t′),

D(t1) · · ·D(tn) and U(tn) · · ·U(t1) are generalized Schur operators with
{1, 2, 2, 2, . . .}. (See [5].) In this case, for λ, µ ∈ Y , generalized Schur

polynomials sD
λ,µ and sλ,µ

U are respectively the shifted skew Schur poly-
nomials Qλ/µ(t1, . . . , tn) and Pλ/µ(t1, . . . , tn).
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In this case, Proposition 3.5 reads as

h
{1,2,2,2,...}
i (t1, . . . , tn) =

{
2Q(i)(t1, . . . , tn) i > 0

Q∅(t1, . . . , tn) i = 0
.

It also follows from Proposition 3.10 that

h
{1,2,2,2,...}
i (t1, . . . , tn) = P(i)(t1, . . . , tn).

Furthermore, Corollary 3.4 reads as∑
µ

2cc(µ\λ)Qµ(t1, . . . , tn) = h
{1,2,2,2,...}
i Qλ(t1, . . . , tn),

where the sum is over all µ’s that are obtained from λ by adding i
boxes, with no two in the same diagonal.

4.2. Young’s Lattice: Dual Identities. This example is the same
as [5, Example 2.4]. Let Y be Young’s lattice Y, and Di the same ones
in the prototypical example, (i.e., Diλ =

∑
µ µ, where the sum is over

all µ’s that are obtained from λ by removing i boxes, with no two in
the same column.) For λ ∈ Y , U ′

i are defined by U ′
iλ =

∑
µ µ, where

the sum is over all µ’s that are obtained from λ by adding i boxes, with
no two in the same row. (In other words, Di removes horizontal strips,
while U ′

i adds vertical strips.)
In this case, since D(t) and U ′(t) satisfy

D(t)U ′(t′) = (1 + tt′)U ′(t′)D(t),

D(t1) · · ·D(tn) and U ′(tn) · · ·U ′(t1) are generalized Schur operators
with {1, 1, 0, 0, 0, . . .}. (See [5].) In this case, for λ, µ ∈ Y , gener-

alized Schur polynomials sλ,µ
U ′ equal sλ′/µ′(t1, . . . , tn), where λ′ and µ′

are the transposes of λ and µ, and sλ′/µ′(t1, . . . , tn) are skew Schur
polynomials.

In the prototypical example (Example 3.6), Corollary 3.4 is the clas-
sical Pieri’s formula, the formula describing the product of a complete
symmetric polynomial and a Schur polynomial. In this example, Corol-
lary 3.4 is the dual Pieri’s formula, the formula describing the product
of a elementary symmetric polynomial and a Schur polynomial.

In this case, Corollary 3.5 reads as

h
{1,1,0,0,0,...}
i (t1, . . . , tn) = s(1i)(t1, . . . , tn) = ei(t1, . . . , tn),

where ei(t1, . . . , tn) denotes the i-th elementally symmetric polynomi-
als.

Furthermore, Corollary 3.4 reads as∑
µ

sµ(t1, . . . , tn) = ei(t1, . . . , tn)sλ(t1, . . . , tn),

where the sum is over all µ’s that are obtained from λ by adding a
vertical strip consisting of i boxes.
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For a skew Young diagram λ/µ and i ∈ N, Theorem 3.2 reads as∑
κ

sκ/µ(t1, . . . , tn) =
i∑

j=0

∑
ν

ei−j(t1, . . . , tn)sλ/ν(t1, . . . , tn),

where the first sum is over all κ’s that are obtained from λ by adding
a vertical strip consisting i boxes; the last sum is over all ν’s that are
obtained from µ by removing a vertical strip consisting j boxes.

4.3. Planar Binary Trees. This example is the same as [7]. Let F
be the monoid of words generated by the alphabet {1, 2} and 0 denote
the word of length 0. We give F the structure of a poset by v ≤ vw
for v, w ∈ F . We call an ideal of the poset F a planar binary tree or
shortly a tree. An element of a tree is called a node of the tree. We
write T for the set of trees and Ti for the set of trees with i nodes. We
respectively call nodes v2 and v1 right and left children of v. A node
without a child is called a leaf. For T ∈ T and v ∈ F , we define Tv to
be {w ∈ T |v ≤ w}.

First we define up operators. We respectively call T ′ a tree obtained
from T by adding some nodes right-strictly and left-strictly if T ⊂ T ′

and each w ∈ T ′ \ T has no right children and no left children. We
define linear operators Ui and U ′

i on KT by

UiT =
∑
T ′

T ′,

U ′
iT =

∑
T ′′

T ′′,

where the first sum is over all T ′’s that are obtained from T by adding
i nodes right-strictly, and the second sum is over all T ′′’s that are
obtained from T by adding i nodes left-strictly. For example,

U2{0} ={0, 1, 11} + {0, 1, 2} + {0, 2, 21},
U ′

2{0} ={0, 2, 22} + {0, 1, 2} + {0, 1, 12}.
Next we define down operators. For T ∈ T, let rT be {w ∈ T |w2 6∈ T.

If w = v1w′ then v2 6∈ T . }, i.e., the set of nodes which have no child
on its right and which belong between 0 and the rightmost leaf of T .
The set rT is a chain. Let rT = {wT,1 < wT,2 < · · · }. We define linear
operators Di on KT by

DiT =

{
(· · · ((T Ä wT,i) Ä wT,i−1) · · · ) Ä wT,1 i ≤ |rT |
0 i > |rT |

for T ∈ T, where

T Ä w = (T \ Tw) ∪ {wv|w1v ∈ Tw}
for w ∈ T such that w2 6∈ T . Roughly speaking, DiT is the tree
obtained from T by evacuating the i topmost nodes without a child
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on its right and belonging between 0 and the rightmost leaf of T . For
example, let T be {0, 1, 11, 12, 121}. Since wT,1 = 0, wT,2 = 12 and

{0, 1, 11, 12, 121} Ä12−→{0, 1, 11, 12} Ä0−→{0, 1, 2},

we have D2T = {0, 1, 2}.
These operators D(t), U(t′) and U ′(t′) satisfy the following equations:

D(t)U(t′) =
1

1 − tt′
U(t′)D(t),

D(t)U ′(t′) = (1 + tt′)U ′(t′)D(t).

(See [7] for a proof of the equations.) Hence the generalized Schur
polynomials for these operators satisfy the same Pieri’s formula as in
the case of the classical Young’s lattice and its dual construction.

In this case, generalized Schur polynomials are not symmetric in
general. For example, since

D(t1)D(t2){0, 1, 12}
= D(t1)({0, 1, 12} + t2{0, 2} + t22{0})
= ({0, 1, 12} + t1{0, 2} + t21{0}) + t2({0, 2} + t1{0}) + t22({0} + t1∅),

sD
{0,1,12},∅(t1, t2) = t1t

2
2 is not symmetric.

We define three kinds of labeling on trees to give generalized Schur

polynomials sT,∅
U (t1, . . . , tn), sT,∅

U ′ (t1, . . . , tn) and sD
T,∅(t1, . . . , tn) presen-

tations as generating functions of them.

Definition 4.1. Let T be a tree and m a positive integer. We call a
map ϕ : T → {1, . . . ,m} a right-strictly-increasing labeling if

• ϕ(w) ≤ ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw2.

We call a map ϕ : T → {1, . . . ,m} a left-strictly-increasing labeling if

• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) ≤ ϕ(v) for w ∈ T and v ∈ Tw2.

We call a map ϕ : T → {1, . . . ,m} a binary-searching labeling if

• ϕ(w) ≥ ϕ(v) for w ∈ T and v ∈ Tw1 and
• ϕ(w) < ϕ(v) for w ∈ T and v ∈ Tw2.

For example, let T = {0, 1, 2, 11, 21, 22}. We write a labeling ϕ on T
as the diagram

ϕ(0)

ϕ(1) ϕ(2)

ϕ(11) ϕ(21) ϕ(22)

¡ @

¡ ¡ @
.
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In this notation, the labelings

1

2 2

2 2 3

¡ @

¡ ¡ @
,

1

2 1

3 2 3

¡ @

¡ ¡ @
,

2

1 3

1 3 4

¡ @

¡ ¡ @

on T are a right-strictly-increasing labeling, a left-strictly-increasing
labeling and a binary-searching labeling, respectively.

The inverse image ϕ−1({1, . . . , n + 1}) of a right-strictly-increasing
labeling ϕ is the tree obtained from the inverse image ϕ−1({1, . . . , n})
by adding some nodes right-strictly. Hence we identify right-strictly-
increasing labelings with sequences (∅ = T 0, T 1, . . . , T m) of m+1 trees
such that T i+1 is obtained from T i by adding some nodes right-strictly
for each i.

Similarly, we identify left-strictly-increasing labelings with sequences
(∅ = T 0, T 1, . . . , T m) of m + 1 trees such that T i+1 is obtained from T i

by adding some nodes left-strictly for each i.
For a binary-searching labeling ϕm : T → {1, . . . ,m}, by the defi-

nition of binary-searching labeling, the inverse image ϕ−1
m ({m}) equals

{wT,1, . . . , wT,k} for some k. We can obtain a binary-searching label-
ing ϕm−1 : T ª ϕ−1

m ({m}) → {1, . . . ,m − 1} from ϕm by evacuating k
nodes ϕ−1

m ({m}) together with their labels. Hence we identify binary-
searching labelings with sequences (∅ = T 0, T 1, . . . , T m) of m + 1 trees
such that Dki

T i = T i−1 for some k1, k2, . . . ,km.
For a labeling ϕ from T to {1, . . . ,m}, we define tϕ =

∏
w∈T tϕ(w).

For a tree T , it follows that

sT,∅
U (t1, . . . , tn) =

∑
ϕ

tϕ,

sT,∅
U ′ (t1, . . . , tn) =

∑
φ

tφ,

sD
T,∅(t1, . . . , tn) =

∑
ψ

tψ,

where the first sum is over all right-strictly-increasing labelings ϕ on
T , the second sum is over all left-strictly-increasing labelings φ on T ,
and the last sum is over all binary-searching labelings ψ on T .
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