1,319 research outputs found
Nonlinear Simulation of Drift Wave Turbulence
In a two-dimensional version of the modified Hasegawa-Wakatani (HW) model,
which describes electrostatic resistive drift wave turbulence, the resistive
coupling between vorticity and density does not act on the zonal components
(). It is therefore necessary to modify the HW model to treat the
zonal components properly. The modified equations are solved numerically, and
visualization and analysis of the solutions show generation of stable zonal
flows, through conversion of turbulent kinetic energy, and the consequent
turbulence and transport suppression. It is demonstrated by comparison that the
modification is essential for generation of zonal flows.Comment: Accepted for publication in the Proceedings of the CSIRO/COSNet
Workshop on Turbulence and Coherent Structures, Canberra, Australia, 10-13
January 2006 (World Scientific, in press, eds. J.P. Denier and J.S.
Frederiksen): 12 pages, 6 figure
Pieri's Formula for Generalized Schur Polynomials
Young's lattice, the lattice of all Young diagrams, has the
Robinson-Schensted-Knuth correspondence, the correspondence between certain
matrices and pairs of semi-standard Young tableaux with the same shape. Fomin
introduced generalized Schur operators to generalize the
Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur
operators are generalizations of semi-standard Young tableaux. We define a
generalization of Schur polynomials as expansion coefficients of generalized
Schur operators. We show that the commutating relation of generalized Schur
operators implies Pieri's formula to generalized Schur polynomials
Freely decaying turbulence in two-dimensional electrostatic gyrokinetics
In magnetized plasmas, a turbulent cascade occurs in phase space at scales
smaller than the thermal Larmor radius ("sub-Larmor scales") [Phys. Rev. Lett.
103, 015003 (2009)]. When the turbulence is restricted to two spatial
dimensions perpendicular to the background magnetic field, two independent
cascades may take place simultaneously because of the presence of two
collisionless invariants. In the present work, freely decaying turbulence of
two-dimensional electrostatic gyrokinetics is investigated by means of
phenomenological theory and direct numerical simulations. A dual cascade
(forward and inverse cascades) is observed in velocity space as well as in
position space, which we diagnose by means of nonlinear transfer functions for
the collisionless invariants. We find that the turbulence tends to a
time-asymptotic state, dominated by a single scale that grows in time. A theory
of this asymptotic state is derived in the form of decay laws. Each case that
we study falls into one of three regimes (weakly collisional, marginal, and
strongly collisional), determined by a dimensionless number D*, a quantity
analogous to the Reynolds number. The marginal state is marked by a critical
number D* = D0 that is preserved in time. Turbulence initialized above this
value become increasingly inertial in time, evolving toward larger and larger
D*; turbulence initialized below D0 become more and more collisional, decaying
to progressively smaller D*.Comment: 12 pages, 12 figures; replaced to match published versio
Fiber Laser Development for LISA
We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable
Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
The first three-dimensional, nonlinear gyrokinetic simulation of plasma
turbulence resolving scales from the ion to electron gyroradius with a
realistic mass ratio is presented, where all damping is provided by resolved
physical mechanisms. The resulting energy spectra are quantitatively consistent
with a magnetic power spectrum scaling of as observed in \emph{in
situ} spacecraft measurements of the "dissipation range" of solar wind
turbulence. Despite the strongly nonlinear nature of the turbulence, the linear
kinetic \Alfven wave mode quantitatively describes the polarization of the
turbulent fluctuations. The collisional ion heating is measured at
sub-ion-Larmor radius scales, which provides the first evidence of the ion
entropy cascade in an electromagnetic turbulence simulation.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Gyrokinetic simulation of entropy cascade in two-dimensional electrostatic turbulence
Two-dimensional electrostatic turbulence in magnetized weakly-collisional
plasmas exhibits a cascade of entropy in phase space [Phys. Rev. Lett. 103,
015003 (2009)]. At scales smaller than the gyroradius, this cascade is
characterized by the dimensionless ratio D of the collision time to the eddy
turnover time measured at the scale of the thermal Larmor radius. When D >> 1,
a broad spectrum of fluctuations at sub-Larmor scales is found in both position
and velocity space. The distribution function develops structure as a function
of v_{perp}, the velocity coordinate perpendicular to the local magnetic field.
The cascade shows a local-scale nonlinear interaction in both position and
velocity spaces, and Kolmogorov's scaling theory can be extended into phase
space.Comment: 8 pages, 10 figures, Conference paper presented at 2009 Asia-Pacific
Plasma Theory Conference. Ver.2 includes corrected typos & updated reference
Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements
We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log"
Noncollisional plasmoid instability based on a gyrofluid and gyrokinetic integrated approach
In this work, the development of two-dimensional current sheets with respect
to tearing-modes, in collisionless plasmas with a strong guide field, is
analysed. During their non-linear evolution, these thin current sheets can
become unstable to the formation of plasmoids, which allows the magnetic
reconnection process to reach high reconnection rates. We carry out a detailed
study of the impact of a finite , which also implies finite electron
Larmor radius effects, on the collisionless plasmoid instability. This study is
conducted through a comparison of gyrofluid and gyrokinetic simulations. The
comparison shows in general a good capability of the gyrofluid models in
predicting the plasmoid instability observed with gyrokinetic simulations. We
show that the effects of promotes the plasmoid growth. The impact of
the closure applied during the derivation of the gyrofluid model is also
studied through the comparison of the energy variation
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
- …