8 research outputs found
Charge transport and trap states in lead sulfide quantum dot field-effect transistors
Lood sulfide Quantum Dots (PbS QDs) hebben grote potentie voor een breed scala aan elektronische apparaten; denk aan zonnecellen, sensors en LEDs. De kwantumopsluiting in deze materialen leidt tot discretie van energieniveaus en afstembaarheid van de bandkloof. Deze materialen zijn ook compatibel met vanuit oplossing verwerkbaar vloeibare depositiemethodes wat weer zorgt voor lage fabricagekosten en energiezuinige consumentenelektronica. PbS QDs zijn ook intensief onderzocht in veldeffect transistoren (FETs), een van de hoofdcomponenten van logica. FETs gebaseerd op deze materialen ondervinden echter nog steeds een lage mobiliteit (~10-2 cm2V-1s-1), voornamelijk door het hoge aantal ladingsvallen. Hoofdoorzaak van stagnerende verbetering in mobiliteit is het gebrek aan kennis over ladingstransport en ladingsvallen in deze toepassingen. Dit proefschrift heeft als focus het onderzoeken van ladingstransport en de rol van ladingsvallen in FETs gebaseerd op PbS QDs. Er is gebruik gemaakt van verschillende methodes, waaronder de introductie van moleculaire dipolen op het diëlektrica oppervlak, het gebruik van diëlektrica met betere oppervlak eigenschappen en het gebruik van hoge-k diëlektrica. Deze methodes hebben invloed op de elektronische karakteristiek en elektronische structuren van ladingsvallen in de apparaten blijkens dit onderzoek. Chemische doping door middel van organische moleculen is ook onderzocht, wat de afstembaarheid van apparaat-polariteit en een mobiliteit tot 0.64 cm2V-1s-1 mogelijk maakt. De fabricage van FETs op plastic substraten maakt het mogelijk om mechanische spanning te introduceren waarmee we de inter-QD afstand moduleren en verder de ladingsdragermobiliteit verbeteren tot 3.0 cm2V-1s-1, de hoogste mobiliteit gerapporteerd in flexibele FETs gebaseerd op PbS QDs
Localized tail state distribution and hopping transport in ultrathin zinc-tin-oxide thin film transistor
Carrier transport properties of solution processed ultra thin (4 nm) zinc-tin oxide (ZTO) thin film transistor are investigated based on its transfer characteristics measured at the temperature ranging from 310K to 77K. As temperature decreases, the transfer curves show a parellel shift toward more postive voltages. The conduction mechanism of ultra-thin ZTO film and its connection to the density of band tail states have been substantiated by two approaches, including fitting logarithm drain current (log ID) to T-1/3 at 310K to 77K according to the two-dimensional Mott variable range hopping theory and the extraction of density of localized tail states through the energy distribution of trapped carrier density. The linear dependency of log ID vs. T-1/3 indicates that the dominant carrier transport mechanism in ZTO is the variable range hopping. The extracted value of density of tail states at the conduction band minimum is 4.75 x 10(20) cm(-3) eV(-1) through the energy distribution of trapped carrier density. The high density of localized tail states in the ultra thin ZTO film is the key factor leading to the room-temperature hopping transport of carriers among localized tail states. Published by AIP Publishing
Recent Progress in Colloidal Quantum Dot Thermoelectrics
Semiconducting colloidal quantum dots (CQDs) represent an emerging class of thermoelectric materials for use in a wide range of future applications. CQDs combine solution processability at low temperatures with the potential for upscalable manufacturing via printing techniques. Moreover, due to their low dimensionality, CQDs exhibit quantum confinement and a high density of grain boundaries, which can be independently exploited to tune the Seebeck coefficient and thermal conductivity, respectively. This unique combination of attractive attributes makes CQDs very promising for application in emerging thermoelectric generator (TEG) technologies operating near room temperature. Herein, recent progress in CQDs for application in emerging thin-film thermoelectrics is reviewed. First, the fundamental concepts of thermoelectricity in nanostructured materials are outlined, followed by an overview of the popular synthetic methods used to produce CQDs with controllable sizes and shapes. Recent strides in CQD-based thermoelectrics are then discussed with emphasis on their application in thin-film TEGs. Finally, the current challenges and future perspectives for further enhancing the performance of CQD-based thermoelectric materials for future applications are discussed
Enabling Ambipolar to Heavy n‑Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules
PbS quantum dots (QDs) are remarkable semiconducting materials, which
are compatible with low-cost solution-processed electronic device
fabrication. Understanding the doping of these materials is one of
the great research interests, as it is a necessary step to improve
the device performance as well as to enhance the applicability of
this system for diverse optoelectronic applications. Here, we report
the efficient doping of the PbS QD films with the use of solution-processable
organic molecules. By engineering the energy levels of the donor molecules
and the PbS QDs through the use of different cross-linking ligands,
we are able to control the characteristics of PbS field-effect transistors
(FETs) from ambipolar to strongly n-type. Because the doping promotes
trap filling, the charge carrier mobility is improved up to 0.64 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, which is the
highest mobility reported for low-temperature processed PbS FETs employing
SiO<sub>2</sub> as the gate dielectric. The doping also reduces the
contact resistance of the devices, which can also explain the origin
of the increased mobility
18.9% Efficient Organic Solar Cells Based on n-Doped Bulk-Heterojunction and Halogen-Substituted Self-Assembled Monolayers as Hole Extracting Interlayers
The influence of halogen substitutions (F, Cl, Br, and I) on the energy levels of the self-assembled hole-extracting molecule [2-(9H-Carbazol-9-yl)ethyl]phosphonic acid (2PACz), is investigated. It is found that the formation of self-assembled monolayers (SAMs) of [2-(3,6-Difluoro-9H-carbazol-9-yl)ethyl]phosphonic acid (F-2PACz), [2-(3,6-Dichloro-9H-carbazol-9-yl)ethyl]phosphonic acid (Cl-2PACz), [2-(3,6-Dibromo-9H-carbazol-9-yl)ethyl]phosphonic acid (Br-2PACz), and [2-(3,6-Diiodo-9H-carbazol-9-yl)ethyl]phosphonic acid (I-2PACz) directly on indium tin oxide (ITO) increases its work function from 4.73 eV to 5.68, 5.77, 5.82, and 5.73 eV, respectively. Combining these ITO/SAM electrodes with the ternary bulk-heterojunction (BHJ) system PM6:PM7-Si:BTP-eC9 yields organic photovoltaic (OPV) cells with power conversion efficiency (PCE) in the range of 17.7%-18.5%. OPVs featuring Cl-2PACz SAMs yield the highest PCE of 18.5%, compared to cells with F-2PACz (17.7%), Br-2PACz (18.0%), or I-2PACz (18.2%). Data analysis reveals that the enhanced performance of Cl-2PACz-based OPVs relates to the increased hole mobility, decreased interface resistance, reduced carrier recombination, and longer carrier lifetime. Furthermore, OPVs featuring Cl-2PACz show enhanced stability under continuous illumination compared to ITO/PEDOT:PSS-based cells. Remarkably, the introduction of the n-dopant benzyl viologen into the BHJ further boosted the PCE of the ITO/Cl-2PACz cells to a maximum value of 18.9%, a record-breaking value for SAM-based OPVs and on par with the best-performing OPVs reported to date
Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics
There is no molecular strategy for selectively increasing the Seebeck coefficient without reducing the electrical conductivity for organic thermoelectrics. Here, it is reported that the use of amphipathic side chains in an n-type donor-acceptor copolymer can selectively increase the Seebeck coefficient and thus increase the power factor by a factor of approximate to 5. The amphipathic side chain contains an alkyl chain segment as a spacer between the polymer backbone and an ethylene glycol type chain segment. The use of this alkyl spacer does not only reduce the energetic disorder in the conjugated polymer film but can also properly control the dopant sites away from the backbone, which minimizes the adverse influence of counterions. As confirmed by kinetic Monte Carlo simulations with the host-dopant distance as the only variable, a reduced Coulombic interaction resulting from a larger host-dopant distance contributes to a higher Seebeck coefficient for a given electrical conductivity. Finally, an optimized power factor of 18 mu W m(-1) K-2 is achieved in the doped polymer film. This work provides a facile molecular strategy for selectively improving the Seebeck coefficient and opens up a new route for optimizing the dopant location toward realizing better n-type polymeric thermoelectrics.Funding Agencies|STW/NWOTechnologiestichting STWNetherlands Organization for Scientific Research (NWO) [VIDI 13476]; China Scholarship CouncilChina Scholarship Council; Center for Information Technology of the University of Groningen; Swedish Research CouncilSwedish Research Council [2016-03979]; Olle Engkvists Stiftelse [204-0256]; Advanced Functional Materials center at LiU [2009 00971]; King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) [OSR-CRG2018-3737]; NWO Exact and Natural Sciences [2020/ENW/00852342]</p