7,827 research outputs found

    Exploratory wind tunnel tests of a shock-swallowing air data sensor at a Mach number of approximately 1.83

    Get PDF
    The test probe was designed to measure free-stream Mach number and could be incorporated into a conventional airspeed nose boom installation. Tests were conducted in the Langley 4-by 4-foot supersonic pressure tunnel with an approximate angle of attack test range of -5 deg to 15 deg and an approximate angle of sideslip test range of + or - 4 deg. The probe incorporated a variable exit area which permitted internal flow. The internal flow caused the bow shock to be swallowed. Mach number was determined with a small axially movable internal total pressure tube and a series of fixed internal static pressure orifices. Mach number error was at a minimum when the total pressure tube was close to the probe tip. For four of the five tips tested, the Mach number error derived by averaging two static pressures measured at horizontally opposed positions near the probe entrance were least sensitive to angle of attack changes. The same orifices were also used to derive parameters that gave indications of flow direction

    Pondering a curriculum of inquiry into wisdom

    Get PDF
    No abstract

    Situation Aware Cognitive Assistance in Smart Homes

    Get PDF
    Smart Homes (SH) have emerged as a realistically viable solution capable of providing technology-driven assistive living for the elderly and disabled. Nevertheless, it still remains a challenge to provide situation-aware cognitive assistance for those in need in their Activity of Daily Living (ADL). This paper introduces a systematic approach to providing situation-aware ADL assistances in a smart home environment. The approach makes use of semantic technologies for sensor data modeling, fusion and management, thus creating machine understandable and processable situational data. It exploits intelligent agents for interpreting and reasoning semantic situational (meta)data to enhance situation-aware decision support for cognitive assistance. We analyze the nature and issues of SH-based healthcare for cognitively deficient inhabitants. We discuss the ways in which semantic technologies enhance situation comprehension. We describe a cognitive agent for realizing high-level cognitive capabilities such as prediction and explanation. We outline the implementation of a prototype assistive system and illustrate the proposed approach through simulated and real-time ADL assistance scenarios in the context of situation aware assistive living

    Nebular models of sub-chandrasekhar mass type ia supernovae: Clues to the origin of ca-rich transients

    Get PDF
    We use non-local thermal equilibrium radiative transport modeling to examine observational signatures of sub- Chandrasekhar mass double detonation explosions in the nebular phase. Results range from spectra that look like typical and subluminous Type Ia supernovae (SNe) for higher mass progenitors to spectra that look like Ca-rich transients for lower mass progenitors. This ignition mechanism produces an inherent relationship between emission features and the progenitor mass as the ratio of the nebular [Ca II]/[Fe III] emission lines increases with decreasing white dwarf mass. Examining the [Ca II]/[Fe III] nebular line ratio in a sample of observed SNe we find further evidence for the two distinct classes of SNe Ia identified in Polin et al. by their relationship between Si II velocity and B-band magnitude, both at time of peak brightness. This suggests that SNe Ia arise from more than one progenitor channel, and provides an empirical method for classifying events based on their physical origin. Furthermore, we provide insight to the mysterious origin of Ca-rich transients. Low-mass double detonation models with only a small mass fraction of Ca (1%) produce nebular spectra that cool primarily through forbidden [Ca II] emission

    MAESTRO, CASTRO, and SEDONA -- Petascale Codes for Astrophysical Applications

    Full text link
    Performing high-resolution, high-fidelity, three-dimensional simulations of Type Ia supernovae (SNe Ia) requires not only algorithms that accurately represent the correct physics, but also codes that effectively harness the resources of the most powerful supercomputers. We are developing a suite of codes that provide the capability to perform end-to-end simulations of SNe Ia, from the early convective phase leading up to ignition to the explosion phase in which deflagration/detonation waves explode the star to the computation of the light curves resulting from the explosion. In this paper we discuss these codes with an emphasis on the techniques needed to scale them to petascale architectures. We also demonstrate our ability to map data from a low Mach number formulation to a compressible solver.Comment: submitted to the Proceedings of the SciDAC 2010 meetin

    PTF11kx: A Type Ia Supernova with Hydrogen Emission Persisting After 3.5 Years

    Full text link
    The optical transient PTF11kx exhibited both the characteristic spectral features of Type Ia supernovae (SNe Ia) and the signature of ejecta interacting with circumstellar material (CSM) containing hydrogen, indicating the presence of a nondegenerate companion. We present an optical spectrum at 13421342 days after peak from Keck Observatory, in which the broad component of Hα\alpha emission persists with a similar profile as in early-time observations. We also present SpitzerSpitzer IRAC detections obtained 12371237 and 18181818 days after peak, and an upper limit from HSTHST ultraviolet imaging at 21332133 days. We interpret our late-time observations in context with published results - and reinterpret the early-time observations - in order to constrain the CSM's physical parameters and compare to theoretical predictions for recurrent nova systems. We find that the CSM's radial extent may be several times the distance between the star and the CSM's inner edge, and that the CSM column density may be two orders of magnitude lower than previous estimates. We show that the Hα\alpha luminosity decline is similar to other SNe with CSM interaction, and demonstrate how our infrared photometry is evidence for newly formed, collisionally heated dust. We create a model for PTF11kx's late-time CSM interaction and find that X-ray reprocessing by photoionization and recombination cannot reproduce the observed Hα\alpha luminosity, suggesting that the X-rays are thermalized and that Hα\alpha radiates from collisional excitation. Finally, we discuss the implications of our results regarding the progenitor scenario and the geometric properties of the CSM for the PTF11kx system.Comment: 15 pages, 8 figures, 3 tables; submitted to Ap

    Diversity of Decline-Rate-Corrected Type Ia Supernova Rise Times: One Mode or Two?

    Get PDF
    B-band light-curve rise times for eight unusually well-observed nearby Type Ia supernovae (SNe) are fitted by a newly developed template-building algorithm, using light-curve functions that are smooth, flexible, and free of potential bias from externally derived templates and other prior assumptions. From the available literature, photometric BVRI data collected over many months, including the earliest points, are reconciled, combined, and fitted to a unique time of explosion for each SN. On average, after they are corrected for light-curve decline rate, three SNe rise in 18.81 +- 0.36 days, while five SNe rise in 16.64 +- 0.21 days. If all eight SNe are sampled from a single parent population (a hypothesis not favored by statistical tests), the rms intrinsic scatter of the decline-rate-corrected SN rise time is 0.96 +0.52 -0.25 days -- a first measurement of this dispersion. The corresponding global mean rise time is 17.44 +- 0.39 days, where the uncertainty is dominated by intrinsic variance. This value is ~2 days shorter than two published averages that nominally are twice as precise, though also based on small samples. When comparing high-z to low-z SN luminosities for determining cosmological parameters, bias can be introduced by use of a light-curve template with an unrealistic rise time. If the period over which light curves are sampled depends on z in a manner typical of current search and measurement strategies, a two-day discrepancy in template rise time can bias the luminosity comparison by ~0.03 magnitudes.Comment: As accepted by The Astrophysical Journal; 15 pages, 6 figures, 2 tables. Explanatory material rearranged and enhanced; Fig. 4 reformatte
    • …
    corecore