17 research outputs found

    Excited‐State Proton Transfer Dynamics of a Super‐Photoacid in Acetone‐Water Mixtures

    Get PDF
    Super-photoacids, that is, photoacids with a negative urn:x-wiley:23670932:media:cptc202200041:cptc202200041-math-0001 value in the electronically excited state, can trigger an excited-state proton transfer (ESPT) to the solvent. For the neutral pyranine-derived super-photoacid studied here, even indications for ESPT in acetoneous solution are reported. The characteristics of ESPT in this environment, that is, which intermediates exist and what the impact of cosolvents is, remain unsettled though. In this work, we study ESPT in acetone-water mixtures by steady-state and time-resolved fluorescence spectroscopy. Various effects are observed: First, the addition of water supports the formation of a hydrogen-bonded ground-state complex comprising one water molecule and the photoacid, whose excitation triggers the formation of a hydrogen-bonded ion pair on a sub-ns time scale. Second, water has an overall accelerating effect on the fluorescence dynamics of the involved emitting species, whose contributions are disentangled in a global analysis scheme, enabling the identification of emission from the free photoacid, a photoacid-water complex, a hydrogen-bonded ion pair, and the deprotonated photoacid. At least two water molecules are necessary for ESPT in the environment. Third, additional acidification thwarts an efficient ground-state complex formation of the photoacid and water. However, upon excitation, complexation may occur on a timescale faster than the photoacid's excited-state lifetime, so that emission from a nascent complex emerges

    Two populations of transition discs?

    Full text link
    We examine the distribution of transition discs as a function of mm flux. We confirm that as expected in any model in which most primordial discs turn into transition discs and in which mm flux declines with time, transition discs have lower mm fluxes on average than primordial discs. However, we find that the incidence of transition discs does not, as expected, fall monotonically towards large mm fluxes and we investigate the hypothesis that these mm bright transition discs may have a distinct physical origin. We find that mm bright transition discs occupy a separate region of parameter space. Transition discs in the bright mm sub-sample have systematically higher accretion rates and inner hole radii than those in the faint mm sub-sample, along with being systematically weighted to earlier spectral types.Comment: 5 pages, 5 figures, accepted version: mnras letter

    Ultrafast transient absorption and solvation of a super-photoacid in acetoneous environments

    Get PDF
    The phenomenon of photoacidity, i.e., an increase in acidity by several orders of magnitude upon electronic excitation, is frequently encountered in aromatic alcohols capable of transferring a proton to a suitable acceptor. A promising new class of neutral super-photoacids based on pyranine derivatives has been shown to exhibit pronounced solvatochromic effects. To disclose the underlying mechanisms contributing to excited-state proton transfer (ESPT) and the temporal characteristics of solvation and ESPT, we scrutinize the associated ultrafast dynamics of the strongest photoacid of this class, namely tris(1,1,1,3,3,3-hexafluoropropan-2-yl)8-hydroxypyrene-1,3,6-trisulfonate, in acetoneous environment, thereby finding experimental evidence for ESPT even under these adverse conditions for proton transfer. Juxtaposing results from time-correlated single-photon counting and femtosecond transient absorption measurements combined with a complete decomposition of all signal components, i.e., absorption of ground and excited states as well as stimulated emission, we disclose dynamics of solvation, rotational diffusion, and radiative relaxation processes in acetone and identify the relevant steps of ESPT along with the associated time scales

    Hydrogen‐Bond‐Modulated Nucleofugality of SeIII Species to Enable Photoredox‐Catalytic Semipinacol Manifolds

    Get PDF
    Chemical bond activations mediated by H-bond interactions involving highly electronegative elements such as nitrogen and oxygen are powerful tactics in modern catalysis research. On the contrary, kindred catalytic regimes in which heavier, less electronegative elements such as selenium engage in H-bond interactions to co-activate C−Se σ-bonds under oxidative conditions are elusive. Traditional strategies to enhance the nucleofugality of selenium residues predicate on the oxidative addition of electrophiles onto SeII-centers, which entails the elimination of the resulting SeIV moieties. Catalytic procedures in which SeIV nucleofuges are substituted rather than eliminated are very rare and, so far, not applicable to carbon-carbon bond formations. In this study, we introduce an unprecedented combination of O−H⋅⋅⋅Se H-bond interactions and single electron oxidation to catalytically generate SeIII nucleofuges that allow for the formation of new C−C σ-bonds by means of a type I semipinacol process in high yields and excellent selectivity

    International variation in survival after out-of-hospital cardiac arrest : A validation study of the Utstein template

    Get PDF
    Introduction: Out-of-hospital cardiac arrest (OHCA) survival varies greatly between communities. The Utstein template was developed and promulgated to improve the comparability of OHCA outcome reports, but it has undergone limited empiric validation. We sought to assess how much of the variation in OHCA survival between emergency medical services (EMS) across the globe is explained by differences in the Utstein factors. We also assessed how accurately the Utstein factors predict OHCA survival. Methods: We performed a retrospective analysis of patient-level prospectively collected data from 12 OHCA registries from 12 countries for the period 1 Jan 2006 through 31 Dec 2011. We used generalized linear mixed models to examine the variation in survival between EMS agencies (n = 232). Results: Twelve registries contributed 86,759 cases. Patient arrest characteristics, EMS treatment and patient outcomes varied across registries. Overall survival to hospital discharge was 10% (range, 6% to 22%). Overall survival with Cerebral Performance Category of 1 or 2 (available for 8/12 registries) was 8%(range, 2% to 20%). The area-under-the-curve for the Utstein model was 0.85 (Wald CI: 0.85-0.85). The Utstein factors explained 51% of the EMS agency variation in OHCA survival. Conclusions: The Utstein factors explained 51%. of the variation in survival to hospital discharge among multiple large geographically separate EMS agencies. This suggests that quality improvement and public health efforts should continue to target modifiable Utstein factors to improve OHCA survival. Further study is required to identify the reasons for the variation that is incompletely understood.Peer reviewe

    Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    No full text
    We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state

    Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    No full text
    We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state

    The impact of a high-quality basic life support police-based first responder system on outcome after out-of-hospital cardiac arrest.

    No full text
    BACKGROUND:Laypersons' efforts to initiate basic life support (BLS) in witnessed Out-of-Hospital Cardiac Arrest (OHCA) remain comparably low within western society. Therefore, in order to shorten no-flow times in cardiac arrest, several police-based first responder systems equipped with automated external defibrillators (Pol-AED) were established in urban areas, which subsequently allow early BLS and AED administration by police officers. However, data on the quality of BLS and AED use in such a system and its impact on patient outcome remain scarce and inconclusive. METHODS:A total of 85 Pol-AED cases were randomly assigned to a gender, age and first rhythm matched non-Pol-AED control group (n = 170) in a 1:2 ratio. Data on quality of BLS were extracted via trans-thoracic impedance tracings of used AED devices. RESULTS:Comparing Pol-AED cases and the control group, we observed a similar compression rate per minute (p = 0.677) and compression ratio (p = 0.651), mirroring an overall high quality of BLS administered by police officers. Time to the first shock was significantly shorter in Pol-AED cases (6 minutes [IQR: 2-10] vs. 12 minutes [IQR: 8-17]; p<0.001). While Pol-AED was not associated with increased sustained return of spontaneous circulation (p = 0.564), a strong and independent impact on survival until hospital discharge (adj. OR: 1.85 [95%CI: 1.06-3.23; p = 0.030]) and a borderline significance for the association with favorable neurological outcome (adj. OR: 1.58 [95%CI: 0.96-2.89; p = 0.052) were observed. CONCLUSION:We were able to demonstrate an early start and a high quality of BLS and AED use in Pol-AED assessed OHCA cases. Moreover, the presence of Pol-AED care was associated with better patient survival and borderline significance for favorable neurological outcome
    corecore