709 research outputs found

    Statistical sensitivity of 163-Ho electron capture neutrino mass experiments

    Full text link
    Large calorimetric neutrino mass experiments using thermal detectors are possibly going to play a crucial role in the challenge for assessing the neutrino mass. This paper describe a tool based on Monte Carlo methods which has been developed to estimate the statistical sensitivity of calorimetric neutrino mass experiments using the 163-Ho electron capture decay. The tool is applied to investigate the effect of various experimental parameters and the results useful for designing an experiment with sub-eV sensitivity are given.Comment: Accepted for publication in EPJ-

    Expectations for a new calorimetric neutrino mass experiment

    Full text link
    A large calorimetric neutrino mass experiment using thermal detectors is expected to play a crucial role in the challenge for directly assessing the neutrino mass. We discuss and compare here two approaches to the estimation of the experimental sensitivity of such an experiment. The first method uses an analytic formulation and allows to readily obtain a sensible estimate over a wide range of experimental configurations. The second method is based on a frequentist Montecarlo technique and is more precise and reliable. The Montecarlo approach is then exploited to study the main sources of systematic uncertainties peculiar to calorimetric experiments. Finally, the tools are applied to investigate the optimal experimental configuration for a calorimetric experiment with Rhenium based thermal detectors.Comment: 25 pagers, 16 figure

    Rocchette di Fazio

    Get PDF

    The MARE Project

    Get PDF
    The international project "Microcalorimeter Arrays for a Rhenium Experiment" (MARE) aims at a direct and calorimetric measurement of the electron antineutrino mass with sub-electronvolt sensitivity. MARE is divided in two phases. The first phase consists of two independent experiments using the presently available detector technology to reach a sensitivity of the order of 1 eV and to improve the understanding of the systematic uncertainties peculiar of this technique. In parallel to these experiments, a wide R&D program will single out the appropriate detector configuration, the read-out scheme and the large array technology for the second phase of MARE. In the second phase, the selected techniques will be applied to the realization of large arrays with as many as 10000 detectors each. At least five arrays will be then deployed to collect the statistics required to probe the antineutrino mass with a sensitivity of at least 0.2 eV, comparable to the one expected for the Katrin experiment (KATRIN Design Report, 2004)

    Investigation of peak shapes in the MIBETA experiment calibrations

    Full text link
    In calorimetric neutrino mass experiments, where the shape of a beta decay spectrum has to be precisely measured, the understanding of the detector response function is a fundamental issue. In the MIBETA neutrino mass experiment, the X-ray lines measured with external sources did not have Gaussian shapes, but exhibited a pronounced shoulder towards lower energies. If this shoulder were a general feature of the detector response function, it would distort the beta decay spectrum and thus mimic a non-zero neutrino mass. An investigation was performed to understand the origin of the shoulder and its potential influence on the beta spectrum. First, the peaks were fitted with an analytic function in order to determine quantitatively the amount of events contributing to the shoulder, also depending on the energy of the calibration X-rays. In a second step, Montecarlo simulations were performed to reproduce the experimental spectrum and to understand the origin of its shape. We conclude that at least part of the observed shoulder can be attributed to a surface effect

    Santa Fiora

    Get PDF
    • …
    corecore