51 research outputs found

    Conservation planning for a widespread, threatened species: WWF and the African elephant Loxodonta africana

    Get PDF
    In a case study of conservation planning by a conservation organization working at a continental scale we examine how WWF identified and prioritized its African elephant Loxodonta africana conservation activities. We (1) review lessons learnt from previous work, (2) identify priority landscapes using biological criteria (e.g. population size and viability) and institutional criteria (e.g. feasibility, sustainability and cost-effectiveness of WWF interventions), and (3) conduct a threat analysis and review of national and subregional action plans. We suggest that species action plans should use priority-setting criteria that focus on conserving the largest and most viable populations at the subspecies level. Clear definition of geographical priorities helps an organization focus its resources and assists monitoring. Species action plans should also take account of plans developed by governments and other stakeholders. Conservation agencies wishing to select which landscapes to invest in for a given species or subspecies could then consider institutional prioritization criteria, such as those used by WWF for the African elephant. This would allow them to invest pragmatically in conservation that has a higher chance of success than work planned solely through scientific analysis. Ultimately, however, no species action plan will succeed unless it has the resources necessary for implementation and the key stakeholders work together in partnershi

    Prey type and foraging ecology of Sanderlings Calidris alba in different climate zones: are tropical areas more favourable than temperate sites?

    Get PDF
    Citation: Grond, K., Ntiamoa-Baidu, Y., Piersma, T., & Reneerkens, J. (2015). Prey type and foraging ecology of Sanderlings Calidris alba in different climate zones: are tropical areas more favourable than temperate sites? PeerJ, 3, e1125. https://doi.org/10.7717/peerj.1125Sanderlings (Calidris alba) are long-distance migratory shorebirds with a non-breeding range that spans temperate and tropical coastal habitats. Breeding in the High Arctic combined with non-breeding seasons in the tropics necessitate long migrations, which are energetically demanding. On an annual basis, the higher energy expenditures during migration might pay off if food availability in the tropics is higher than at temperate latitudes. We compared foraging behaviour of birds at a north temperate and a tropical non-breeding site in the Netherlands and Ghana, respectively. In both cases the birds used similar habitats (open beaches), and experienced similar periods of daylight, which enabled us to compare food abundance and availability, and behavioural time budgets and food intake. During the non-breeding season, Sanderlings in the Netherlands spent 79% of their day foraging; in Ghana birds spent only 38% of the daytime period foraging and the largest proportion of their time resting (58%). The main prey item in the Netherlands was the soft-bodied polychaete Scolelepis squamata, while Sanderlings in Ghana fed almost exclusively on the bivalve Donax pulchellus, which they swallowed whole and crushed internally. Average availability of polychaete worms in the Netherlands was 7.4 g ash free dry mass (AFDM) m−2, which was one tenth of the 77.1 g AFDM m−2 estimated for the beach in Ghana. In the tropical environment of Ghana the Sanderlings combined relatively low energy requirements with high prey intake rates (1.64 mg opposed to 0.13 mg AFDM s−1 for Ghana and the Netherlands respectively). Although this may suggest that the Ghana beaches are the most favourable environment, processing the hard-shelled bivalve (D. pulchellus) which is the staple food could be costly. The large amount of daytime spent resting in Ghana may be indicative of the time needed to process the shell fragments, rather than indicate rest

    Characteristics and Risk Perceptions of Ghanaians Potentially Exposed to Bat-Borne Zoonoses through Bushmeat.

    Get PDF
    Emerging zoonotic pathogens from wildlife pose increasing public health threats globally. Bats, in particular, host an array of zoonotic pathogens, yet there is little research on how bats and humans interact, how people perceive bats and their accompanying disease risk, or who is most at risk. Eidolon helvum, the largest and most abundant African fruit bat species, is widely hunted and eaten in Ghana and also carries potentially zoonotic pathogens. This combination raises concerns, as hunting and butchering bushmeat are common sources of zoonotic transmission. Through a combination of interviews with 577 Ghanaians across southern Ghana, we identified the characteristics of people involved in the bat-bushmeat trade and we explored their perceptions of risk. Bat hunting, selling and consumption are widely distributed across regional and ethnic lines, with hotspots in certain localities, while butchering is predominantly done by women and active hunters. Interviewees held little belief of disease risk from bats, saw no ecological value in fruit bats and associated the consumption of bats with specific tribes. These data can be used to inform disease and conservation management plans, drawing on social contexts and ensuring that local voices are heard within the larger global effort to study and mitigate outbreaks.This is the final version. It was first published by Springer in EcoHealth at http://link.springer.com/article/10.1007%2Fs10393-014-0977-0

    Low fitness at low latitudes: Wintering in the tropics increases migratory delays and mortality rates in an Arctic breeding shorebird

    Get PDF
    Publisher's version (útgefin grein)Evolutionary theories of seasonal migration generally assume that the costs of longer migrations are balanced by benefits at the non-breeding destinations. We tested, and rejected, the null hypothesis of equal survival and timing of spring migration for High Arctic breeding sanderling Calidris alba using six and eight winter destinations between 55°N and 25°S, respectively. Annual apparent survival was considerably lower for adult birds wintering in tropical West Africa (Mauritania: 0.74 and Ghana: 0.75) than in three European sites (0.84, 0.84 and 0.87) and in subtropical Namibia (0.85). Moreover, compared with adults, second calendar-year sanderlings in the tropics, but not in Europe, often refrained from migrating north during the first possible breeding season. During northward migration, tropical-wintering sanderlings occurred at their final staging site in Iceland 5–15 days later than birds wintering further north or south. Namibia-wintering sanderlings tracked with solar geolocators only staged in West Africa during southward migration. The low annual survival, the later age of first northward migration and the later passage through Iceland during northward migration of tropical-wintering sanderlings, in addition to the skipping of this area during northward but not southward migration by Namibia-wintering sanderlings, all suggest they face issues during the late non-breeding season in West Africa. Migrating sanderlings defy long distances but may end up in winter areas with poor fitness prospects. We suggest that ecological conditions in tropical West Africa make the fuelling prior to northward departure problematic.Annual expeditions to Mauritania were organized by NIOZ, and we especially thank Maarten Brugge, Anne Dekinga, Jutta Leyrer and Bernard Spaans for their contributions. The Parc National du Banc d'Arguin granted research permits and facilitated access. J.R. and T.S.L.V. thank Aarhus University for logistical support at Zackenberg. Benoît Sittler organized expeditions to Karupelv Valley. The Farlington Ringing Group provided cannon‐net equipment. This work was supported by two grants from the Netherlands Polar Programme (851.40.072 and 866.15.207) of the Netherlands Organisation for Scientific research (NWO) and from the Metawad project awarded by Waddenfonds (WF209925) to JR and TP. The measurements in Mauritania had their beginnings in the Prins Bernhard Cultuurfondsprijs to TP. JR and TP also received INTERACT grants for Transnational Access from the European Community's Seventh Framework Programme (grant agreement No262693). JR received a generous donation from World Wildlife Fund Netherlands. JAA was supported by FCT (SFRH/BPD/91527/2012). OG and Loïc Bollache were supported by the French Polar Institute (IPEV; program ‘1036 Interactions') and TL by a Veni grant (no. 016.Veni.192.245) from NWO. The authors declare no conflict of interest. This study is based on the efforts of more than 2,000 observers reporting colour‐ringed sanderlings. We especially thank Guðmundur Örn Benediktsson, John Bowler, Ruth Croger, Anne de Potier, Benjamin Gnep, Kim Fischer, Kirsten Grond, Eileen Hughes, Hilger Lemke, Pedro Lourenço, Andy Johnson, Pierre Leon, Jelle Loonstra, Sebastien Nedellec, Afonso Rocha, Brian Rogers, Ron Summers, Jan van Dijk and Hein Verkade. Anneke Bol, Marco van der Velde and Yvonne Verkuil molecularly sexed the majority of birds, Maria Teixeira and Jérôme Moreau sexed eight individuals. Ron Porter created flags for geolocator attachment. Eldar Rakhimberdiev answered questions concerning FLightR and Allert Bijleveld, Jesse Conklin, Rosemarie Kentie, Thomas Oudman, Janne Ouwehand, Emma Penning, Eldar Rakhimberdiev, Brett Sandercock, Ron Summers, Yvonne Verkuil and two reviewers critically commented on drafts. Benjamin Gnep created Figure.Peer Reviewe

    Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species.

    Get PDF
    Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats

    Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus.

    Get PDF
    Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat

    Measuring the Impact of Conservation : The Growing Importance of Monitoring Fauna, Flora and Funga

    Get PDF
    Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on.This paper was made possible by funding from the Swiss Network for International Studies to the University of Lausanne (L.F. and P.J.S.) and its partners under the project: "Unblocking the flow of biodiversity data for multi-stakeholder environmental sustainability management". The research was carried out, in part, by GNG at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). PAVB was supported by the project MACRISK-PTDC/BIA-CBI/0625/2021, through the FCT-FundacAo para a Ciencia e a Tecnologia. YNB acknowledges support from the Audemars-Watkins Foundation for the CBCR's protected area monitoring work featured in this paper.info:eu-repo/semantics/publishedVersio

    Measuring the Impact of Conservation: The Growing Importance of Monitoring Fauna, Flora and Funga

    Get PDF
    Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on
    corecore