15 research outputs found

    Editorial: emerging issues in sociotechnical systems thinking and workplace safety

    Get PDF
    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics. Practitioner Summary: Sociotechnical approaches to workplace safety are intended to draw practitioners’ attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and practice challenge

    Modelling fatigue and the use of fatigue models in work settings

    No full text
    In recent years, theoretical models of the sleep and circadian system developed in laboratory settings have been adapted to predict fatigue and, by inference, performance. This is typically done using the timing of prior sleep and waking or working hours as the primary input and the time course of the predicted variables as the primary output. The aim of these models is to provide employers, unions and regulators with quantitative information on the likely average level of fatigue, or risk, associated with a given pattern of work and sleep with the goal of better managing the risk of fatigue-related errors and accidents/incidents. The first part of this review summarises the variables known to influence workplace fatigue and draws attention to the considerable variability attributable to individual and task variables not included in current models. The second part reviews the current fatigue models described in the scientific and technical literature and classifies them according to whether they predict fatigue directly by using the timing of prior sleep and wake (one-step models) or indirectly by using work schedules to infer an average sleep-wake pattern that is then used to predict fatigue (two-step models). The third part of the review looks at the current use of fatigue models in field settings by organizations and regulators. Given their limitations it is suggested that the current generation of models may be appropriate for use as one element in a fatigue risk management system. The final section of the review looks at the future of these models and recommends a standardised approach for their use as an element of the ‘defenses-in-depth’ approach to fatigue risk management.

    Sociotechnical approaches to workplace safety: Research needs and opportunities

    Get PDF
    The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research

    The direct cost burden of 13years of disabling workplace injuries in the U.S. (1998–2010): Findings from the Liberty Mutual Workplace Safety Index

    Get PDF
    AbstractIntroduction: Although occupational injuries are among the leading causes of death and disability around the world, the burden due to occupational injuries has historically been under-recognized, obscuring the need to address a major public health problem. Methods: We established the Liberty Mutual Workplace Safety Index (LMWSI) to provide a reliable annual metric of the leading causes of the most serious workplace injuries in the United States based on direct workers compensation (WC) costs. Results: More than 600billionindirectWCcostswerespentonthemostdisablingcompensablenon−fatalinjuriesandillnessesintheUnitedStatesfrom1998to2010.Theburdenin2010remainedsimilartotheburdenin1998inrealterms.Thecategoriesofoverexertion(600 billion in direct WC costs were spent on the most disabling compensable non-fatal injuries and illnesses in the United States from 1998 to 2010. The burden in 2010 remained similar to the burden in 1998 in real terms. The categories of overexertion (13.6B, 2010) and fall on same level ($8.6B, 2010) were consistently ranked 1st and 2nd. Practical application: The LMWSI was created to establish the relative burdens of events leading to work-related injury so they could be better recognized and prioritized. Such a ranking might be used to develop research goals and interventions to reduce the burden of workplace injury in the United States

    Challenges to human drivers in increasingly automated vehicles

    No full text
    Objective : We examine the relationships between contemporary progress in on‐road vehicle automation and its coherence with an envisioned “autopia” (automobile utopia) whereby the vehicle operation task is removed from all direct human control. Background : The progressive automation of on‐road vehicles toward a completely driverless state is determined by the integration of technological advances into the private automobile market; improvements in transportation infrastructure and systems efficiencies; and the vision of future driving as a crash‐free enterprise. While there are many challenges to address with respect to automated vehicles concerning the remaining driver role, a considerable amount of technology is already present in vehicles and is advancing rapidly. Methods : A multidisciplinary team of experts met to discuss the most critical challenges in the changing role of the driver, and associated safety issues, during the transitional phase of vehicle automation where human drivers continue to have an important but truncated role in monitoring and supervising vehicle operations. Results : The group endorsed that vehicle automation is an important application of information technology, not only because of its impact on transportation efficiency, but also because road transport is a life critical system in which failures result in deaths and injuries. Five critical challenges were identified: driver independence and mobility, driver acceptance and trust, failure management, third-party testing, and political support. Conclusion : Vehicle automation is not technical innovation alone, but is a social as much as a technological revolution consisting of both attendant costs and concomitant benefits

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore