20 research outputs found
Conditional and constitutive expression of a Tbx1-GFP fusion protein in mice.
BACKGROUND: Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) is caused by a 1.5-3 Mb microdeletion of chromosome 22q11.2, frequently referred to as 22q11.2 deletion syndrome (22q11DS). This region includes TBX1, a T-box transcription factor gene that contributes to the etiology of 22q11DS. The requirement for TBX1 in mammalian development is dosage-sensitive, such that loss-of-function (LOF) and gain-of-function (GOF) of TBX1 in both mice and humans results in disease relevant congenital malformations. RESULTS: To further gain insight into the role of Tbx1 in development, we have targeted the Rosa26 locus to generate a new GOF mouse model in which a Tbx1-GFP fusion protein is expressed conditionally using the Cre/LoxP system. Tbx1-GFP expression is driven by the endogenous Rosa26 promoter resulting in ectopic and persistent expression. Tbx1 is pivotal for proper ear and heart development; ectopic activation of Tbx1-GFP in the otic vesicle by Pax2-Cre and Foxg1-Cre represses neurogenesis and produces morphological defects of the inner ear. Overexpression of a single copy of Tbx1-GFP using Tbx1Cre/+ was viable, while overexpression of both copies resulted in neonatal lethality with cardiac outflow tract defects. We have partially rescued inner ear and heart anomalies in Tbx1Cre/- null embryos by expression of Tbx1-GFP. CONCLUSIONS: We have generated a new mouse model to conditionally overexpress a GFP-tagged Tbx1 protein in vivo. This provides a useful tool to investigate in vivo direct downstream targets and protein binding partners of Tbx1
A cornucopia of delights for the mouse fancier
A report on the Mouse Molecular Genetics meeting, Hinxton, UK, 5-9 September 2007
Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos
<p>Abstract</p> <p>Background</p> <p>The use of genetically-encoded fluorescent proteins has revolutionized the fields of cell and developmental biology and in doing so redefined our understanding of the dynamic morphogenetic processes that shape the embryo. With the advent of more accessible and sophisticated imaging technologies as well as an abundance of fluorescent proteins with different spectral characteristics, the dynamic processes taking place <it>in situ </it>in living cells and tissues can now be probed. Photomodulatable fluorescent proteins are one of the emerging classes of genetically-encoded fluorescent proteins.</p> <p>Results</p> <p>We have compared PA-GFP, PS-CFP2, Kaede and KikGR four readily available and commonly used photomodulatable fluorescent proteins for use in ES cells and mice. Our results suggest that the green-to-red photoconvertible fluorescent protein, Kikume Green-Red (KikGR), is most suitable for cell labeling and lineage studies in ES cells and mice because it is developmentally neutral, bright and undergoes rapid and complete photoconversion. We have generated transgenic ES cell lines and strains of mice exhibiting robust widespread expression of KikGR. By efficient photoconversion of KikGR we labeled subpopulations of ES cells in culture, and groups of cells within <it>ex utero </it>cultured mouse embryos. Red fluorescent photoconverted cells and their progeny could be followed for extended periods of time.</p> <p>Conclusion</p> <p>Transgenic ES cells and mice exhibiting widespread readily detectable expression of KikGR are indistinguishable from their wild type counterparts and are amenable to efficient photoconversion. They represent novel tools for non-invasive selective labeling specific cell populations and live imaging cell dynamics and cell fate. Genetically-encoded photomodulatable proteins such as KikGR represent emergent attractive alternatives to commonly used vital dyes, tissue grafts and genetic methods for investigating dynamic behaviors of individual cells, collective cell dynamics and fate mapping applications.</p
A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D
Abstract Background To exploit the flood of data from advances in high throughput imaging of optically sectioned nuclei, image analysis methods need to correctly detect thousands of nuclei, ideally in real time. Variability in nuclear appearance and undersampled volumetric data make this a challenge. Results We present a novel 3D nuclear identification method, which subdivides the problem, first segmenting nuclear slices within each 2D image plane, then using a shape model to assemble these slices into 3D nuclei. This hybrid 2D/3D approach allows accurate accounting for nuclear shape but exploits the clear 2D nuclear boundaries that are present in sectional slices to avoid the computational burden of fitting a complex shape model to volume data. When tested over C. elegans, Drosophila, zebrafish and mouse data, our method yielded 0 to 3.7% error, up to six times more accurate as well as being 30 times faster than published performances. We demonstrate our method's potential by reconstructing the morphogenesis of the C. elegans pharynx. This is an important and much studied developmental process that could not previously be followed at this single cell level of detail. Conclusions Because our approach is specialized for the characteristics of optically sectioned nuclear images, it can achieve superior accuracy in significantly less time than other approaches. Both of these characteristics are necessary for practical analysis of overwhelmingly large data sets where processing must be scalable to hundreds of thousands of cells and where the time cost of manual error correction makes it impossible to use data with high error rates. Our approach is fast, accurate, available as open source software and its learned shape model is easy to retrain. As our pharynx development example shows, these characteristics make single cell analysis relatively easy and will enable novel experimental methods utilizing complex data sets.</p
Tbx1 affects asymmetric cardiac morphogenesis by regulating<i>Pitx2</i>in the secondary heart field
Individuals with 22q11 deletion syndrome (22q11DS;DiGeorge/velo-cardio-facial syndrome) have multiple congenital malformations,including cardiovascular defects. Most individuals with this syndrome possess 1.5-3.0 Mb hemizygous 22q11.2 deletions. The T-box transcription factor TBX1, lies within the nested 1.5 Mb interval and is a strong candidate for its etiology. Inactivation of Tbx1 in the mouse results in neonatal lethality owing to the presence of a single cardiac outflow tract. One important goal is to understand the molecular pathogenesis of cardiovascular defects in this syndrome. However, the molecular pathways of Tbx1 are still largely unexplored. Here, we show that Tbx1is co-expressed with the bicoid-like homeodomain transcription factor Pitx2 in secondary heart field cells in the pharyngeal mesenchyme. In situ hybridization studies in Tbx1-/- mouse embryos revealed downregulation of Pitx2 in these cells. To test for a possible genetic interaction, we intercrossed Tbx1+/- and Pitx2+/- mice. Tbx1+/-;Pitx2+/- mice died perinatally with cardiac defects, including double outlet right ventricle, and atrial and ventricular septal defects, all occurring with variable penetrance. An enhancer located between exons 4 and 5 in which a putative T-half site was identified near an Nkx2.5-binding site regulates asymmetric expression of Pitx2. We show using in vitro studies that Tbx1 binds to this site and activates the Pitx2 enhancer with the synergistic action of Nkx2.5. The results presented in this study unravel a novel Tbx1-Pitx2 pathway linking Tbx1 to asymmetric cardiac morphogenesis