199 research outputs found
Large area space solar cell assemblies
Development of a large area space solar cell assembly is presented. The assembly consists of an ion implanted silicon cell and glass cover. The important attributes of fabrication are (1) use of a back surface field which is compatible with a back surface reflector, and (2) integration of coverglass application and call fabrication
European Society of Biomechanics S.M. Perren Award 2018: Altered biomechanical stimulation of the developing hip joint in presence of hip dysplasia risk factors
Fetal kicking and movements generate biomechanical stimulation in the fetal skeleton, which is important for prenatal musculoskeletal development, particularly joint shape. Developmental dysplasia of the hip (DDH) is the most common joint shape abnormality at birth, with many risk factors for the condition being associated with restricted fetal movement. In this study, we investigate the biomechanics of fetal movements in such situations, namely fetal breech position, oligohydramnios and primiparity (firstborn pregnancy). We also investigate twin pregnancies, which are not at greater risk of DDH incidence, despite the more restricted intra-uterine environment. We track fetal movements for each of these situations using cine-MRI technology, quantify the kick and muscle forces, and characterise the resulting stress and strain in the hip joint, testing the hypothesis that altered biomechanical stimuli may explain the link between certain intra-uterine conditions and risk of DDH. Kick force, stress and strain were found to be significantly lower in cases of breech position and oligohydramnios. Similarly, firstborn fetuses were found to generate significantly lower kick forces than non-firstborns. Interestingly, no significant difference was observed in twins compared to singletons. This research represents the first evidence of a link between the biomechanics of fetal movements and the risk of DDH, potentially informing the development of future preventative measures and enhanced diagnosis. Our results emphasise the importance of ultrasound screening for breech position and oligohydramnios, particularly later in pregnancy, and suggest that earlier intervention to correct breech position through external cephalic version could reduce the risk of hip dysplasia
B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2
Osteoblasts are necessary to B lymphopoiesis and mobilizing doses of G-CSF or cyclophosphamide inhibit osteoblasts, whereas AMD3100/Plerixafor does not. However, the effect of these mobilizing agents on B lymphopoiesis has not been reported. Mice (wild-type, knocked-out for TNF-α and TRAIL, or over-expressing Bcl-2) were mobilized with G-CSF, cyclophosphamide, or AMD3100. Bone marrow, blood, spleen and lymph node content in B cells was measured. G-CSF stopped medullar B lymphopoiesis with concomitant loss of B-cell colony-forming units, pre-pro-B, pro-B, pre-B and mature B cells and increased B-cell apoptosis by an indirect mechanism. Overexpression of the anti-apoptotic protein Bcl2 in transgenic mice rescued B-cell colony forming units and pre-pro-B cells in the marrow, and prevented loss of all B cells in marrow, blood and spleen. Blockade of endogenous soluble TNF-α with Etanercept, or combined deletion of the TNF-α and TRAIL genes did not prevent B lymphopoiesis arrest in response to G-CSF. Unlike G-CSF, treatments with cyclophosphamide or AMD3100 did not suppress B lymphopoiesis but caused instead robust B-cell mobilization. G-CSF, cyclophosphamide and AMD3100 have distinct effects on B lymphopoiesis and B-cell mobilization with: 1) G-CSF inhibiting medullar B lymphopoiesis without mobilizing B cells in a mechanism distinct from the TNF-α-mediated loss of B lymphopoiesis observed during inflammation or viral infections; 2) CYP mobilizing B cells but blocking their maturation; and 3) AMD3100 mobilizing B cells without affecting B lymphopoiesis. These results suggest that blood mobilized with these three agents may have distinct immune properties. © 2013 Ferrata Storti Foundation
Northeast Folklore volume 1 numbers 1-4
The first ever issue of Northeast Folklore was published in the spring of 1958 under the editorship of Edward D. Ives (known as Sandy) and Bacil F. Kirtley through the Department of English at the University of Maine. The four editions that year were later bound into a single volume.
Table of Contents
Number 1 (Spring):
Mishaps of a Maine Lobsterman
Maine Winter Menus: A Study in Ingenuity
“Young Jimmy Foulger:” A Hitherto Unrecorded Ballad in the Northeast
John Ellis – Hunter, Guide, Legend
Number 2 (Summer):
Bibliography of New England-Maritimes Folklore
Selected Bibliography of New England-Maritimes Folklore Collections and Studies Prior to 1950
Number 3 (Fall):
Folklore from Aroostook County, Maine, and Neighboring Canada
The Creation of Folk Songs
Number 4 (Winter):
Yankee Doodle: An Early Version
Two Stories from the Maine Lumberwoods
The First Miramichi Folksong Festival
Folklore from Aroostook County, Maine, and Neighboring Canadahttps://digitalcommons.library.umaine.edu/nf/1001/thumbnail.jp
Northeast Folklore volume 1 numbers 1-4
The first ever issue of Northeast Folklore was published in the spring of 1958 under the editorship of Edward D. Ives (known as Sandy) and Bacil F. Kirtley through the Department of English at the University of Maine. The four editions that year were later bound into a single volume.
Table of Contents
Number 1 (Spring):
Mishaps of a Maine Lobsterman
Maine Winter Menus: A Study in Ingenuity
“Young Jimmy Foulger:” A Hitherto Unrecorded Ballad in the Northeast
John Ellis – Hunter, Guide, Legend
Number 2 (Summer):
Bibliography of New England-Maritimes Folklore
Selected Bibliography of New England-Maritimes Folklore Collections and Studies Prior to 1950
Number 3 (Fall):
Folklore from Aroostook County, Maine, and Neighboring Canada
The Creation of Folk Songs
Number 4 (Winter):
Yankee Doodle: An Early Version
Two Stories from the Maine Lumberwoods
The First Miramichi Folksong Festival
Folklore from Aroostook County, Maine, and Neighboring Canadahttps://digitalcommons.library.umaine.edu/nf/1001/thumbnail.jp
HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α
Many patients with hematological neoplasms fail to mobilize sufficient numbers of hematopoietic stem cells (HSCs) in response to granulocyte colony-stimulating factor (G-CSF) precluding subsequent autologous HSC transplantation. Plerixafor, a specific antagonist of the chemokine receptor CXCR4, can rescue some but not all patients who failed to mobilize with G-CSF alone. These refractory poor mobilizers cannot currently benefit from autologous transplantation. To discover alternative targetable pathways to enhance HSC mobilization, we studied the role of hypoxia-inducible factor-1α (HIF-1α) and the effect of HIF-1α pharmacological stabilization on HSC mobilization in mice. We demonstrate in mice with HSC-specific conditional deletion of the Hif1a gene that the oxygen-labile transcription factor HIF-1α is essential for HSC mobilization in response to G-CSF and Plerixafor. Conversely, pharmacological stabilization of HIF-1α with the 4-prolyl hydroxylase inhibitor FG-4497 synergizes with G-CSF and Plerixafor increasing mobilization of reconstituting HSCs 20-fold compared with G-CSF plus Plerixafor, currently the most potent mobilizing combination used in the clinic
Identification of Mechanosensitive Genes during Embryonic Bone Formation
Although it is known that mechanical forces are needed for normal bone
development, the current understanding of how biophysical stimuli are
interpreted by and integrated with genetic regulatory mechanisms is limited.
Mechanical forces are thought to be mediated in cells by
“mechanosensitive” genes, but it is a challenge to
demonstrate that the genetic regulation of the biological system is dependant on
particular mechanical forces in vivo. We propose a new means of selecting
candidate mechanosensitive genes by comparing in vivo gene expression patterns
with patterns of biophysical stimuli, computed using finite element analysis. In
this study, finite element analyses of the avian embryonic limb were performed
using anatomically realistic rudiment and muscle morphologies, and patterns of
biophysical stimuli were compared with the expression patterns of four candidate
mechanosensitive genes integral to bone development. The expression patterns of
two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise
with biophysical stimuli induced by embryonic muscle contractions, identifying
them as potentially being involved in the mechanoregulation of bone formation.
An altered mechanical environment was induced in the embryonic chick, where a
neuromuscular blocking agent was administered in ovo to modify skeletal muscle
contractions. Finite element analyses predicted dramatic changes in levels and
patterns of biophysical stimuli, and a number of immobilised specimens exhibited
differences in ColX and Ihh expression. The results obtained indicate that
computationally derived patterns of biophysical stimuli can be used to inform a
directed search for genes that may play a mechanoregulatory role in particular
in vivo events or processes. Furthermore, the experimental data demonstrate that
ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators
in translating information from the mechanical environment to the molecular
regulation of bone formation in the embryo
Altered biomechanical stimulation of the developing hip joint in presence of hip dysplasia risk factors
Fetal kicking and movements generate biomechanical stimulation in the fetal skeleton, which is important for prenatal musculoskeletal development, particularly joint shape. Developmental dysplasia of the hip (DDH) is the most common joint shape abnormality at birth, with many risk factors for the condition being associated with restricted fetal movement. In this study, we investigate the biomechanics of fetal movements in such situations, namely fetal breech position, oligohydramnios and primiparity (firstborn pregnancy). We also investigate twin pregnancies, which are not at greater risk of DDH incidence, despite the more restricted intra-uterine environment. We track fetal movements for each of these situations using cine-MRI technology, quantify the kick and muscle forces, and characterise the resulting stress and strain in the hip joint, testing the hypothesis that altered biomechanical stimuli may explain the link between certain intra-uterine conditions and risk of DDH. Kick force, stress and strain were found to be significantly lower in cases of breech position and oligohydramnios. Similarly, firstborn fetuses were found to generate significantly lower kick forces than non-firstborns. Interestingly, no significant difference was observed in twins compared to singletons. This research represents the first evidence of a link between the biomechanics of fetal movements and the risk of DDH, potentially informing the development of future preventative measures and enhanced diagnosis. Our results emphasise the importance of ultrasound screening for breech position and oligohydramnios, particularly later in pregnancy, and suggest that earlier intervention to correct breech position through external cephalic version could reduce the risk of hip dysplasia
- …