1,195 research outputs found

    Navigability is a Robust Property

    Full text link
    The Small World phenomenon has inspired researchers across a number of fields. A breakthrough in its understanding was made by Kleinberg who introduced Rank Based Augmentation (RBA): add to each vertex independently an arc to a random destination selected from a carefully crafted probability distribution. Kleinberg proved that RBA makes many networks navigable, i.e., it allows greedy routing to successfully deliver messages between any two vertices in a polylogarithmic number of steps. We prove that navigability is an inherent property of many random networks, arising without coordination, or even independence assumptions

    190Pt-186Os geochronometer reveals open system behaviour of 190Pt-4He isotope system

    Get PDF
    Platinum Group Minerals are typically dated using the 187Re-187Os and 190Pt-186Os isotope systems and more recently using the 190Pt-4He geochronometer. The 187Re-187Os and 190Pt-186Os compositions of Pt-alloys from the Kondyor Zoned Ultramafic Complex (ZUC) analysed here reveal overprinting for both geochronometers except in one alloy exhibiting the most unradiogenic 187Os/188Os and most radiogenic 186Os/188Os signatures. These signatures argue for an Early Triassic mineralisation, when silicate melts/fluids derived from the partial melting of an Archean mantle crystallised to form the Kondyor ZUC while the 190Pt-4He chronometer supports an Early Cretaceous mineralisation. We propose that Kondyor ZUC represents the root of an alkaline picritic volcano that constitutes the remnants of an Early Triassic island arc formed during the subduction of the Mongol-Okhotsk ocean seafloor under the Siberia craton. After the Early Cretaceous collision of Siberia with the Mongolia-North China continent, the exhumation of deep-seated structures - such as the Kondyor ZUC - allowed these massifs to cool down below the closure temperatures of the Pt-He and K-Ar, Rb-Sr isotope systems, explaining their Early to Late Cretaceous ages for the Kondyor ZUC

    A variable amplitude fretting fatigue life estimation technique: formulation and experimental validation

    Get PDF
    The aims of the research work summarised in this paper are twofold. The first goal is to make available a large number of new experimental results generated by testing specimens of grey cast iron under both constant and variable amplitude fretting fatigue loading. The second goal is to formulate an advanced fretting fatigue design approach based on the combined use of the Modified WÓ§hler Curve Method, the Theory of Critical Distances and the Shear Stress-Maximum Variance Method. The validation exercise based on the experimental results being produced demonstrates that the proposed methodology is a powerful tool suitable for designing mechanical assemblies against fretting fatigue

    Quantifying phase transformation during the manufacturing process of AISI 430 ferritic stainless steel

    Get PDF
    The effect of ferrite to austenite transformation phenomenon on microstructure and annealing performance of AISI 430 (EN 1.4016) ferritic stainless steel 16%Cr-0.04%C and 17%Cr-0.02%C was studied by electron backscatter diffraction and X-ray diffraction. Hot-rolled and annealed specimens of each ferritic stainless steel were collected from manufacturing route, where different states were analysed. Chemical composition shift of AISI 430 is correlated to microstructural behaviour of each material, while annealing temperature impact over grain growth phenomena is discussed

    From Relational Data to Graphs: Inferring Significant Links using Generalized Hypergeometric Ensembles

    Full text link
    The inference of network topologies from relational data is an important problem in data analysis. Exemplary applications include the reconstruction of social ties from data on human interactions, the inference of gene co-expression networks from DNA microarray data, or the learning of semantic relationships based on co-occurrences of words in documents. Solving these problems requires techniques to infer significant links in noisy relational data. In this short paper, we propose a new statistical modeling framework to address this challenge. It builds on generalized hypergeometric ensembles, a class of generative stochastic models that give rise to analytically tractable probability spaces of directed, multi-edge graphs. We show how this framework can be used to assess the significance of links in noisy relational data. We illustrate our method in two data sets capturing spatio-temporal proximity relations between actors in a social system. The results show that our analytical framework provides a new approach to infer significant links from relational data, with interesting perspectives for the mining of data on social systems.Comment: 10 pages, 8 figures, accepted at SocInfo201

    The impact of fretting wear on structural dynamics: Experiment and simulation

    Get PDF
    This paper investigates the effects of fretting wear on frictional contacts. A high frequency friction rig is used to measure the evolution of hysteresis loops, friction coefficient and tangential contact stiffness over time. This evolution of the contact parameters is linked to significant changes in natural frequencies and damping of the rig. Hysteresis loops are replicated by using a Bouc-Wen modified formulation, which includes wear to simulate the evolution of contact parameters and to model the evolving dynamic behaviour of the rig. A comparison of the measured and predicted dynamic behaviour demonstrates the feasibility of the proposed approach and highlights the need to consider wear to accurately capture the dynamic response of a system with frictional joints over its lifetime

    A reaction-diffusion model for the growth of avascular tumor

    Full text link
    A nutrient-limited model for avascular cancer growth including cell proliferation, motility and death is presented. The model qualitatively reproduces commonly observed morphologies for primary tumors, and the simulated patterns are characterized by its gyration radius, total number of cancer cells, and number of cells on tumor periphery. These very distinct morphological patterns follow Gompertz growth curves, but exhibit different scaling laws for their surfaces. Also, the simulated tumors incorporate a spatial structure composed of a central necrotic core, an inner rim of quiescent cells and a narrow outer shell of proliferating cells in agreement with biological data. Finally, our results indicate that the competition for nutrients among normal and cancer cells may be a determinant factor in generating papillary tumor morphology.Comment: 9 pages, 6 figures, to appear in PR

    The impact of fretting wear on structural dynamics: Experiment and simulation

    Get PDF
    This paper investigates the effects of fretting wear on frictional contacts. A high frequency friction rig is used to measure the evolution of hysteresis loops, friction coefficient and tangential contact stiffness over time. This evolution of the contact parameters is linked to significant changes in natural frequencies and damping of the rig. Hysteresis loops are replicated by using a Bouc-Wen modified formulation, which includes wear to simulate the evolution of contact parameters and to model the evolving dynamic behaviour of the rig. A comparison of the measured and predicted dynamic behaviour demonstrates the feasibility of the proposed approach and highlights the need to consider wear to accurately capture the dynamic response of a system with frictional joints over its lifetime

    Evolutionary Games with Affine Fitness Functions: Applications to Cancer

    Full text link
    We analyze the dynamics of evolutionary games in which fitness is defined as an affine function of the expected payoff and a constant contribution. The resulting inhomogeneous replicator equation has an homogeneous equivalent with modified payoffs. The affine terms also influence the stochastic dynamics of a two-strategy Moran model of a finite population. We then apply the affine fitness function in a model for tumor-normal cell interactions to determine which are the most successful tumor strategies. In order to analyze the dynamics of concurrent strategies within a tumor population, we extend the model to a three-strategy game involving distinct tumor cell types as well as normal cells. In this model, interaction with normal cells, in combination with an increased constant fitness, is the most effective way of establishing a population of tumor cells in normal tissue.Comment: The final publication is available at http://www.springerlink.com, http://dx.doi.org/10.1007/s13235-011-0029-
    • …
    corecore