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A B S T R A C T   

The aims of the research work summarised in this paper are twofold. The first goal is to make available a large 
number of new experimental results generated by testing specimens of grey cast iron under both constant and 
variable amplitude fretting fatigue loading. The second goal is to formulate an advanced fretting fatigue design 
approach based on the combined use of the Modified Wӧhler Curve Method, the Theory of Critical Distances and 
the Shear Stress-Maximum Variance Method. The validation exercise based on the experimental results being 
produced demonstrates that the proposed methodology is a powerful tool suitable for designing mechanical 
assemblies against fretting fatigue.   

1. Introduction 

Fretting fatigue is a damaging process that occurs at the interface 
between two contacting materials when they are subjected to cyclic 
tangential movements of small amplitude. As reported by Hills and 
Nowell [1], compared to the un-fretted condition, the presence of fret-
ting can reduce the high-cycle fatigue strength of metallic materials by 
up to 50 %. This explains the reason why fretting fatigue is frequently a 
matter of concern in many important industrial sectors such as aero-
nautics and automotive. Accordingly, since the middle of the last cen-
tury [2] to date much theoretical and experimental work has been done 
in order to develop accurate and reliable fretting fatigue life estimation 
techniques [3,4]. 

When it comes to designing metallic materials against fretting fa-
tigue, the work done by Giannakopoulos et al. [5] arguably represents 
one of the most relevant breakthroughs in the field. In particular, by 
introducing the “notch analogue” concept, they postulated that the 
damaging processes taking place in notched metallic materials subjected 
to cyclic loading are the same as those observed under fretting fatigue. 
Based on this intuition, a number of follow-up studies attempted to 
extend to the fretting fatigue case the use of those methodologies that 

were originally developed to deal with the standard notch fatigue 
problem [3,6]. 

As far as geometrical features of all kinds are concerned, examination 
of the state of the art suggests that the Theory of Critical Distances (TCD) 
[7,8] is one of the most successful approaches for modelling the detri-
mental effect of localised stress/strain concentration phenomena. The 
TCD quantifies fatigue damage via an effective design quantity that is 
calculated by adopting a material length scale parameter. This material 
length is used to directly post-process the stress/strain fields in the vi-
cinity of the assessed notch [8]. Within this theoretical framework, the 
TCD critical distance is treated as a mechanical/fatigue property which 
is different for different materials and varies with load ratio [4]. 

While the TCD can be formulated in many different ways [10], the 
Point Method (PM) is not only the simplest form of this powerful theory, 
but also the most accurate and reliable one [7]. According to Peterson 
[11], the PM postulates that the stress state to be used to estimate fatigue 
damage has to be taken at a material-dependent distance from the apex 
of the notch. 

Another important aspect characterising the fretting fatigue problem 
is that the stress/strain distributions in the contact regions are always 
multiaxial [1]. This explains the reason why, since the end of the 1980 s 
[12], several attempts have been made to extend to fretting fatigue the 
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use of a variety of criteria originally developed to assess multiaxial fa-
tigue damage [4] in plain metallic materials. 

Given the historical perspective briefly summarised above, starting 
from the beginning of this century, a number of approaches have been 
formulated to attempt to assess fretting fatigue damage by combining 
the “notch analogue” concept – used in the form of the PM – with 
different multiaxial fatigue criteria - that include, amongst others: Dang 
Van’s criterion [13,14], the Modified Wӧhler Curve Method [15,16], 
Smith, Watson and Topper’s parameter [17,18], Fatemi & Socie’s 
method [18] and Findley’s criterion [17]. In this setting, it is interesting 
to observe that, based on the outcomes from a bespoke experimental and 
theoretical investigation, Gandiolle at al. [19] came to the conclusion 
that, as far as fretting fatigue is concerned, the estimates obtained by 
using the critical plane concept are more accurate than those obtained 
from stress invariant-based criteria. 

The considerations reported above are all based on studies involving 
the initiation of fretting fatigue cracks under constant amplitude (CA) 
cyclic loading. In this setting, the articles available in the technical 
literature show that, so far, the international scientific community has 
focused their attention mainly on CA fretting fatigue situations. In 
contrast, just a limited number of studies have been published to date 
[20–28] where the problem of quantifying and assessing fretting fatigue 
damage is addressed by considering variable amplitude (VA) load his-
tories. As highlighted by Pinto et al. [29], the above studies are still 
limited and they cannot be used to draw any definitive conclusions, 
mainly because VA fretting fatigue failures were generated under 
coupled bulk and fretting load. Further, they observe that all the 

post-processing analyses were based on uniaxial fatigue approaches so 
that the degree of multiaxiality of the stress/strain fields in the fretted 
regions was not taken into account explicitly. Finally, Pinto and 
co-authors [29] also highlight that still nothing can be concluded about 
the accuracy of a simple linear accumulation law (i.e., Palmgren and 
Miner’s rule [30,31]) in assessing damage under VA fretting fatigue. 

The considerations reported above make it evident that to date little 
work has been done in order to understand, model and assess damage in 
metallic materials subjected to VA fretting fatigue loading. In this 
challenging scenario, the ambitious aims of the research work sum-
marised in what follows are twofold. The first goal is to make available 
to the international scientific community a large number of new 
experimental results generated under both CA and VA fretting fatigue 
loading by using a four-actuator cruciform fatigue machine. The second 
objective is to formulate a design approach based on the use of the 
Modified Wӧhler Curve Method (MWCM) [32,33], the PM [7] and the 
Shear Stress-Maximum Variance Method (τ-MVM) [34,35] to predict the 
lifetime of metallic materials subjected to VA fretting fatigue loading. 

2. The τ-MVM: stress components relative to the critical plane 

The fretting fatigue design technique proposed in the present 
investigation is based on the use of the MWCM [32,33]. The MWCM is a 
critical plane approach that estimates fatigue damage through the 
normal and shear stress components relative to the plane of maximum 
shear stress amplitude (i.e., the critical plane). Accordingly, the present 
section reviews the definitions that are used to estimate the critical plane 

Nomenclature 

A, B Material fatigue constants in the LM vs Nf relationship. 
E Young’s modulus. 
F(t) Time-variable axial force applied to the fretting specimens. 
Fa, Fm Amplitude and mean value of force F(t). 
Fa,i Amplitude of the force associated with the i-th cycle. 
Fa,max Maximum amplitude of the force in the spectrum. 
Fi,j,k(t) External time-variable forces. 
k Negative inverse slope of the fully-reversed uniaxial 

fatigue curve. 
k0 Negative inverse slope of the fully-reversed torsional 

fatigue curve. 
kτ(ρeff) Negative inverse slope of the modified Wöhler curve. 
LM Critical distance in the finite life regime. 
m Mean stress sensitivity index. 
mτ(ρeff) Negative inverse slope in the high-cycle fatigue regime 

under VA loading. 
NA Reference number of cycles to failure. 
Nb Number of blocks to failure. 
Nf Experimental number of cycles to failure. 
Nf,e Estimated number of cycles to failure. 
ni Number of cycles associated with the i-th force level in the 

spectrum. 
Nkp Number of cycles to failure defining the position of the 

knee point. 
P(t) Normal load pushing the pads against the fretting 

specimens. 
Pa, Pm Amplitude and mean value of force P(t). 
PS Probability of survival. 
r Linear coordinate associated with the focus path. 
R Stress ratio (R=σmin/σmax or R=τmin/τmax). 
Rp Pad radius. 
t Time instant. 
Δσ Range of the axial stress. 

ΔσA, 50% Range of the uniaxial endurance limit at NA cycles to 
failure (for PS=50%). 

Δσnet Range of the nominal net axial stress. 
ΔσAn, 50% Range of the nominal net endurance limit at NA cycles to 

failure (for PS=50%). 
Δτ Range of the torsional stress. 
ΔτA, 50% Range of the torsional endurance limit at NA cycles to 

failure (for PS=50%). 
ν Poisson’s ratio. 
ρeff Effective critical plane stress ratio. 
ρlim Intrinsic fatigue strength threshold. 
σA Amplitude of the fully-reversed uniaxial endurance limit at 

NA cycles to failure. 
σAn Amplitude of the fully-reversed uniaxial notch endurance 

limit. 
σb(t) Bulk stress at a generic instant. 
σmax, τmax Maximum stress in the cycle. 
σmin, τmin Minimum stress in the cycle. 
σn,a Amplitude of the stress perpendicular to the critical plane. 
σn,m Mean stress perpendicular to the critical plane. 
σn,max Maximum value of the stress perpendicular to the critical 

plane. 
σn,min Maximum value of the stress perpendicular to the critical 

plane. 
σUTS Ultimate tensile strength. 
τ(t) Time-variable shear stress. 
τa Shear stress amplitude on the plane of maximum shear 

stress amplitude. 
τA Fully-reversed torsional endurance limit at NA cycles to 

failure. 
τA, Ref(ρeff) Fatigue strength corresponding to NRef cycles to failure. 
τMV(t) Resolved shear stress. 
τMV,max Maximum value of the resolved shear stress. 
τMV,min Minimum value of the resolved shear stress.  
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stress components of interest. The definitions reported in what follows 
were derived by taking advantage of the τ-MVM [34,35]. 

Consider a body subjected to a system of time-variable forces and 
moments that result in a time-dependent three-dimensional state of 
stress, [σ(t)], at the sub-surface point of interest (point O in Fig. 1a). 
Given stress tensor [σ(t)], the τ-MVM [34,36] postulates that the critical 
plane is that material plane which contains the direction, MV, associated 
with the maximum variance of the resolved shear stress, τMV(t) (Fig. 1b). 
Since variance is a statistical measure of dispersion that stands inde-
pendently of the characteristics of the data sample being considered, the 

τ-MVM can be used both with CA and VA load histories. Accordingly, 
under CA as well as under VA fatigue loading, the first step is to 
post-process stress tensor [σ(t)] at point O so that the orientation of that 
material plane containing the direction experiencing the maximum 
variance of the resolved shear stress can be determined unambiguously 
[34]. As soon as the orientation of the critical plane is known, tensor 
[σ(t)] is projected along the direction perpendicular to the critical plane 
itself to determine normal stress σn(t). 

If the body seen if Fig. 1a is subjected to a CA load history, the 
amplitude, τa, and the mean value, τm, of the shear stress relative to the 

Fig. 1. Stress quantities relative to the critical plane determined according to the τ-MVM under constant (c) and variable (d) amplitude fatigue loading.  
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critical plane take on the following values (Fig. 1c): 

τa =
1
2
(
τMV,max − τMV,min

)
(1)  

τm =
1
2
(
τMV,max + τMV,min

)
(2) 

Correspondingly, the amplitude, σn,a, and the mean value, σn,m, of 
normal stress σn(t) are calculated as follows (Fig. 1c): 

σn,a =
1
2
(
σn,max − σn,min

)
(3)  

σn,m =
1
2
(
σn,max + σn,min

)
(4) 

In Eqs. (1) to (4) the subscripts max and min are used to denote the 
maximum and minimum value, respectively, of the stress signal under 
consideration. 

If the body sketched in Fig. 1a is subjected to a VA load history 
defined over the time interval [0, T], the mean value and the equivalent 
amplitude of the shear and normal stress relative to the critical plane (at 
point O) are calculated via the following definitions [37,38]: 

τm =
1
T

∫T

0

τMV(t) • dt (5)  

τa =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 • Var[τMV(t)]

√
where Var[τMV(t)] =

1
T

∫T

0

[τMV(t) − τm ]
2
• dt (6)  

σn,m =
1
T

∫T

0

σn(t) • dt (7)  

σn,a =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 • Var[σn(t)]

√
where Var[σn(t)] =

1
T

∫T

0

[
σn(t) − σn,m

]2
• dt (8) 

Fig. 1d explains graphically the meaning of definitions (5) to (8). 
This figure shows that, since their calculation is based on the variance 
concept, both τa and σn,a are proportional to the amount of variation of 
stress signals τMV(t) and σn(t), respectively. 

3. Fatigue damage according to the modified Wöhler curve 
method 

The way the MWCM quantifies fatigue damage is conceptualised 
through the modified Wöhler diagram seen in Fig. 2. This log-log chart 
plots the maximum shear stress amplitude on the critical plane, τa, 
against the number of cycles to failure, Nf. The MWCM assesses the 
extent of damage based on the effective value of the critical plane stress 

ratio which is defined as [39,40]: 

ρeff =
m • σn,m + σn,a

τa
(9) 

In definition (9) the mean stress sensitivity index, m, quantifies the 
material sensitivity to the presence of non-zero mean stresses normal to 
the critical plane. The value of material fatigue constant m varies in the 
range 0–1 and is determined experimentally from a fatigue curve 
generated under a load ratio R= σmin/σmax larger than − 1 [40]. Thanks 
to the way it is defined, ρeff varies not only with the magnitude of the 
mean stresses [39], but also as the degree of multiaxiality and 
non-proportionality of the load history being post-processed change 
[40]. 

For a specific metallic material, the uniaxial and torsional plain fa-
tigue curve (both determined under a load ratio, R, equal to −1) can be 
plotted together in the same diagram. This can be done because, while 
negative inverse slopes k (uniaxial loading, ρeff=1) and k0 (torsion, 
ρeff=0) do not vary, the corresponding endurance limits can directly be 
rewritten as [32,33] (Fig. 2): 

τA,Ref
(
ρeff = 1

)
=

σA

2
(10)  

τA,Ref
(
ρeff = 0

)
= τA (11)  

where σA and τA are the uniaxial and torsional fully-reversed endurance 
limit, respectively, extrapolated at NA cycles to failure. 

As per the schematic chart of Fig. 2, much experimental evidence 
confirms that, given this specific way of conceptualising fatigue damage, 
the torsional fatigue curve (ρeff=0) is always above the uniaxial fatigue 
curve (ρeff=1) [32,33,40]. Accordingly, the hypothesis can be formed 
that, for a given material, endurance limit τA,Ref(ρeff) decreases as the 
critical plane stress ratio, ρeff, increases. Since, for a given material, the 
available fatigue results that can be used for calibration purposes are, in 
general, those obtained under uniaxial (ρeff=1) and torsional (ρeff=0) 
fully-reversed fatigue loading, the modified Wöhler curves for values of 
ρeff different from either 0 or 1 must be estimated. This can be done by 
defining the values of the negative inverse slope, kτ(ρeff), and the 
endurance limit, τA,Ref(ρeff), characterising the modified Wöhler curve of 
interest from the following calibration relationships [33,39,40]: 

kτ
(
ρeff

)
= (k − k0) • ρeff + k0 for ρeff ≤ ρlim (12a)  

kτ
(
ρeff

)
= (k − k0) • ρlim + k0 for ρeff > ρlim (12b)  

τA,Ref
(
ρeff

)
=

(σA

2
− τA

)
• ρeff + τA for ρeff ≤ ρlim (13a)  

τA,Ref
(
ρeff

)
=

(σA

2
− τA

)
• ρlim + τA for ρeff > ρlim (13b) 

where ρlim takes on the following value [39,40]: 

ρlim =
τA

2τA − σA
(14) 

Within the MWCM theoretical framework, the limit value of the 
critical plane stress ratio, ρlim, is used to model the fact that, in the 
presence of large values of ratio ρeff, fatigue damage no longer depends 
solely on the shear stress amplitude relative to the critical plane [41,42]. 
Therefore, when in Eq. (9) the numerator (that quantifies the effect of 
the normal stress) becomes significantly larger than the denominator (i. 
e., τa), the conventional critical plane approach must be adapted to take 
into account the fact that, under these circumstances, the physical 
processes leading to final breakage change [42]. In the MWCM setting, 
this is done by shifting from Eqs. (12a) and (13a) to Eqs. (12b) and (13b) 
[39]. 

Fig. 2. Modified Wöhler diagram.  
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4. The fretting fatigue life estimation technique 

The fretting fatigue assessment methodology formulated and vali-
dated in what follows is based on the use of three distinct ingredients, i. 
e.: the MWCM, the τ-MVM and the PM. As far as fretting fatigue is 
concerned, the TCD employed in the form of the PM is used to take into 
account the effect of the gradients characterising the distribution of the 
stress in the fretted region. The MWCM instead is used to quantify the 
extent of damage associated with the degree of multiaxiality and non- 
proportionality of the local linear-elastic stress fields. Further, via ρeff 
this criterion assesses also the detrimental effect of superimposed static 
normal stresses (i.e., mean stress effect in fatigue). Finally, the τ-MVM is 
used to calculate the stress quantities of interest, with this being done by 
taking full advantage of the maximum variance concept. In what fol-
lows, these three key ingredients will be combined together to formalise 
a novel design approach suitable for estimating fretting fatigue lifetime 
in the presence of CA (Section 4.1) as well as of VA (Section 4.2) load 
histories. 

4.1. Fretting fatigue assessment under constant amplitude loading 

The process flow diagrams of Figs. 3 and 4 visualise the design 
procedure that is recommended to be followed to predict fretting fatigue 
lifetime under CA time-variable loading [43]. For the sake of clarity, 
consider then a flat specimen which is subjected to CA axial cyclic stress 
σb(t) - resulting from axial cyclic force F(t). Force P(t) is used to push two 
fretting pads against the specimen’s surfaces, with the two pads being 
subjected also to an CA oscillatory tangential force, Q(t) (Fig. 3a). 

According to Fig. 3a and b, the first step is to determine (either 
analytically or numerically) the linear-elastic multiaxial stress distri-
bution along the focus path. As far as fretting fatigue is concerned, the 
focus path is defined as a straight line that originates from the edge of 
the contact zone in the critical region (point A in Fig. 3b) and is 
perpendicular to the contact surface itself [15,43]. 

Having determined the relevant stress fields, the subsequent step is 
to calibrate the MWCM’s governing equations, Eqs. (12a) to (13b), via 
the parent material uniaxial and torsional fully-reversed fatigue curve. 

In order to extend the use of the PM to the medium-cycle fatigue 
regime, the relevant critical distance for the material under investiga-
tion is expressed as follows [44,45]: 

LM
(
Nf

)
= A • NB

f (15) 

According to definition (15), for a given material, length scale LM(Nf) 

is assumed to increase as the number of cycles to failure decreases [44]. 
This assumption takes as its starting point the idea that, in the presence 
of a stress concentrator, the size of the fatigue process zone increases as 
magnitude of the applied loading increases. Since the TCD critical dis-
tance is linked with the size of the process zone [7,39], it is logical to 
hypothesise that length scale LM(Nf) increases as Nf decreases. A and B 
are material constants that can directly be determined by 
post-processing the fatigue results generated by testing (under R=−1) 
both plain specimens and samples weakened by a known geometrical 
feature [40,44,45]. The procedure suggested as being followed to esti-
mate constants A and B will be reviewed thoroughly in Section 6.2. 

As soon as relationships kτ(ρeff), τA,Ref(ρeff) and LM(Nf) are calibrated, 
fretting fatigue lifetime can be predicted using the recursive strategy 
outlined in Figs. 3 and 4. The first step is to use the τ-MVM to determine, 
along the focus path, the orientation of the critical plane and the asso-
ciated stress quantities at any distance r from the edge of the contact 
zone in the critical region (Figs. 3c, 4a and 4b). For a given value of 
distance r, stress quantities τa, Eq. (1), σn,a, Eq. (3), and σn,m, Eq. (4), are 
then used to estimate ρeff, Eq. (9) – Fig. 4a–c. The calculated value for 
stress ratio ρeff allows the MWCM’s governing equations to be calibrated 
unambiguously (Fig. 4d). At this point, the modified Wöhler curve being 
estimated is used to predict the number of cycles to failure, Nf, via the 
following standard power law (Fig. 4d): 

Nf = NA •

[
τA,ref(ρeff)

τa

]kτ (ρeff )

(16) 

Subsequently, Nf estimated at a distance from the edge of the contact 
zone equal to r is used to determine, via Eq. (15), the corresponding 
critical length, LM(Nf). Following this procedure, Nf and the associated 
critical distance can be calculated at any point along the focus path. The 
fretted component being designed is then assumed to fail at the number 
of cycles to failure equal to Nf,e, where Nf,e is the number of cycles to 
failure that satisfies the following PM-related mathematical condition 
[37,43,44] (Fig. 4e): 

LM(Nf,e)

2
= r (17) 

The approach summarised in Figs. 3 and 4 can be used in situations of 
practical interest by coding a recursive procedure suitable for reaching 
convergence by making distance r vary (Fig. 4e). 

Having summarised the procedure we propose to estimate fretting 
fatigue lifetime under CA loading, it is worth considering in detail the 
definition that is recommended to be used to determine the orientation 
of the focus path (Fig. 3b). The physical model behind this definition 
takes as a starting point the idea that damage under fatigue loading is 
the result of a number of processes taking place, near the crack initiation 
location, in a finite size region [40,46,47]. According to the TCD used in 
form of the Volume Method, the size of this reference volume ap-
proaches L(Nf) [7,48]. Therefore, as per Eq. (15), the size of the process 
zone decreases as the number of cycles to failure increases. In terms of 
fatigue assessment, the TCD Volume Method makes use of an effective 
stress that is calculated by averaging the linear-elastic stress over the 
process zone itself [7,48]. However, the effective stress estimated ac-
cording to the Volume Method is the same as the one determined (ac-
cording to the PM) at a distance from the crack initiation point equal to L 
(Nf)/2 [7,44]. Based on this equivalence in terms of effective stress, it is 
reasonable to form the hypothesis that, according to the PM, the focus 
path as defined in Fig. 3b represents the set of those material points 
whose stress state is proportional to the extent of fatigue damage that is 
accumulated in the material within the process zone. In other words, 
since the size of the structural volume increases as the number of cycles 
to failure decreases, the point at the centre of the structural volume 
(whose stress state is used to estimate fatigue damage according to the 
PM) increases its distance from the crack initiation site as Nf decreases. 
Thus, as the PM reference point moves away from the assumed crack Fig. 3. The τ-MVM applied in conjunction with the PM to estimate, along the 

focus path, the stress components relative to the critical plane. 
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initiation point, it draws a straight line that is nothing but the focus path 
as defined in Fig. 3b [45]. The reasoning behind the definition of the 
focus path applies independently of the complexity of the loading his-
tory being assessed [37]. Accordingly, the same definition will be 
adopted also in the next section to extend the use of the proposed fret-
ting fatigue design methodology to VA situations. 

4.2. Fretting fatigue assessment under variable amplitude loading 

The procedure being proposed here to estimate VA fretting fatigue 
lifetime is summarised via the flowcharts reported in Figs. 3 and 5. For 
the sake of simplicity, consider again the case of a flat specimen and two 
fretting pads (Fig. 3a). In this instance the applied forces and stresses are 
supposed to vary randomly over the time interval [0, T]. 

As in the CA case, the focus path is taken coincident with a straight 
line that emanates from the edge of the contact zone in the critical region 

(point A in Fig. 3b) and is normal to the contact surface [15,43]. 
Assume now that the point of interest along the focus path (i.e., point 

O in Fig. 3b) is at a distance from the edge of the contact zone equal to r. 
The linear-elastic stress tensor, [σ(t)], at point O is then post-processed 
according to the τ-MVM to identify that material plane containing the 
direction which experiences the maximum variance of the resolved 
shear stress (direction MV in Fig. 3c) [34]. As soon as the orientation of 
the critical plane is known, the associated shear stress amplitude, τa, is 
determined according to definition (6) – Fig. 5a. Similarly, the mean 
value, σn,m, and the amplitude, σn,a, of the stress normal to the critical 
plane are calculated using definitions (7) and (8), respectively – Fig. 5b. 

Stress components τa, σn,m and σn,a allow the degree of multiaxiality 
and non-proportionality of the stress state at point O as well as the effect 
of non-zero mean stresses to be quantified directly via ratio ρeff (Fig. 5c), 
Eq. (9). The calculated value for ρeff is then used to estimate the corre-
sponding modified Wöhler curve from Eqs. (12a) to (13b) that are 

Fig. 4. The MWCM applied in conjunction with the PM and the τ-MVM to estimate lifetime under CA fretting fatigue loading.  
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calibrated through the parent material uniaxial and torsional fully- 
reversed CA fatigue curve (Figs. 5c and 5d). 

To assess the damaging effect of those cycles of low shear stress 
amplitude in a more effective, accurate way, the negative inverse slope 
in the high-cycle fatigue regime is recommended to be adjusted as fol-
lows [37,49] (Fig. 5d): 

mτ
(
ρeff

)
= 2 • kτ

(
ρeff

)
− 1 for ρeff ≤ ρlim (18a)  

mτ
(
ρeff

)
= 2 • kτ(ρlim) − 1 = const for ρeff > ρlim (18b) 

As to the above correction, in rigorous terms, the position of the knee 
point (Nkp in Fig. 5d) should be determined by running appropriate 
experiments. If this is not possible, its position can be assumed according 
to the available recommendations [50]. 

By taking advantage of the long-established rainflow counting 
method [51,52], stress signal τMV(t) is post-processed to count the shear 
stress cycles (Figs. 5a and 5e). It is important to point out here that the 
rainflow counting method can be used in a rigorous, standard way since, 
by its definition, τMV(t) is always a unidimensional stress quantity (with 
this holding true independently of the degree of multiaxiality charac-
terising the assessed state of stress). 

The resulting load spectrum (Fig. 5f) is then used together with the 
relevant modified Wöhler curve (Fig. 5d) to quantify the damage content 
associated with any shear stress cycle being counted so that the resulting 
total damage is estimated as follows (Fig. 5g): 

Dtot =
∑j

i=1

ni

Nf,i
(19) 

As soon as total damage Dtot is known, it is used to calculate an 
equivalent number of cycles to failure, Nf,eq, via the following rela-
tionship [37] (Fig. 5h): 

Nf,eq =

∑j

i=1
ni

∑j

i=1

ni
Nf,i

(20)  

so that critical distance LM(Nf), Eq. (15), can be rewritten as [37]: 

LM
(
Nf,eq

)
= A • NB

f,eq = A •

⎛

⎜
⎜
⎜
⎝

∑j

i=1
ni

∑j

i=1

ni
Nf,i

⎞

⎟
⎟
⎟
⎠

B

(21) 

It is important to point out here that in Eq. (21) constants A and B are 
still estimated for the material under investigation from two sets of fa-
tigue results generated by testing (under CA R=-1) both plain samples 
and specimens containing a known geometrical feature [40,44,45]. 

If the critical distance value determined through Eq. (21) satisfies the 
following PM-related condition (Fig. 5i): 

LM(Nf,eq)

2
= r (22)  

where r is the distance, measured along the focus path, from the edge of 
the contact zone (point A in Fig. 3), then the number of cycles to failure, 
Nf,e, is predicted using the following relationship [37] (Fig. 5j): 

Fig. 5. The MWCM applied in conjunction with the PM and the τ-MVM to estimate lifetime under VA fretting fatigue loading.  
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Nf,e =
Dcr

(
ρeff

)
• ntot

Dtot
=

Dcr
(
ρeff

)
•
∑j

i=1
ni

∑j

i=1

ni
Nf,i

(23) 

In Eq. (23) Dcr(ρeff) is the critical value of the damage sum. In the 
most general case, the hypothesis is formed that Dcr(ρeff) varies as the 
degree of multiaxiality and non-proportionality of the assessed stress 
state changes [37]. However, the problem can be simplified greatly if the 
critical value of the damage sum is taken invariably equal to unity as 
suggested by Palmgren [30] and Miner [31] in their pivotal in-
vestigations. Alternatively, Dcr(ρeff) can be set equal to 0.27 and to 0.37 
for steel and aluminium, respectively, with this resulting in a larger 
degree of conservatism compared to the one obtained by using Palmgren 
and Miner’s recommended value [53]. 

Turning back to the VA fretting fatigue assessment methodology 
summarised in Figs. 3 and 5, if, in contrast, condition (22) is not satisfied 
(Fig. 5k), then the same procedure as the one described above has to be 
re-used to estimate Nf,e at a different point along the focus path, with this 
approach being applied recursively until convergence occurs. 

5. Materials, methods and experimental results 

5.1. Materials and static/fatigue testing 

In order to validate the accuracy and reliability of the novel fretting 
fatigue assessment technique formulated in the previous sections, a 
comprehensive experimental investigation was carried out at the 
Structures Laboratory of the University of Sheffield, UK. This experi-
mental work involved the use of two different materials, i.e. grey cast 
iron (CI) 40054 and grey CI 40060 (controlled carbon). 

The static properties of the two materials being investigated were 
determined by testing 100 mm (width) x 6 mm (thickness) dog-bone flat 
specimens with a 100 kN Mayes servo-hydraulic axial machine at a 
displacement rate of 0.0333 m/s. For any iron–carbon alloy being 
tested, the ultimate tensile strength, σUTS, Young’s modulus, E, and 
Poisson’s ratio, ν, were obtained by averaging the results from three 
individual tests. This standard experimental procedure returned the 
following values for CI 40054: σUTS= 354 MPa, E = 100 GPa and 
ν = 0.26. Similarly, the relevant static properties for CI 40060 were 
determined to be: σUTS= 278 MPa, E = 108 GPa, and ν = 0.25. 

The fatigue properties of the iron-carbon alloys under investigation 
were obtained using a 100 kN Mayes servo-hydraulic machine to test flat 
specimens under axial loading and a SCHENCK tension-torsion machine 
(axial load capacity=250 kN; torsion capacity=2.2 kNm) to test cylin-
drical samples under torsional loading. 

The plain material fatigue properties were generated by testing (at 
10 Hz under load ratios, R, equal to −1 as well as to 0.1) dog-bone flat 
specimens having width equal to 10 mm and thickness to 6 mm. 

To calibrate the LM vs. Nf relationship for the two iron–carbon alloys 
under investigation, the necessary notch fatigue curves were determined 
by testing flat specimens with opposite edge V-notches. The average 
dimensions of the specimens of CI 40054 were as follows: gross width 
equal to 25.7 mm, net width 9.7 mm, thickness 5.9 mm, notch root 
radius 0.22 mm and notch opening angle to 30◦. In contrast, the average 
dimensions of the specimens of CI 40060 were: gross width equal to 
25.6 mm, net width 10.3 mm, thickness 6.1 mm, notch root radius 
0.16 mm and notch opening angle 30◦. 

The fully-reversed torsional fatigue curves for the materials were 
generated at a frequency of 5 Hz. The solid cylindrical specimens being 
tested had average gross diameter equal to 14.9 mm and average net 
diameter equal to 9.9 mm. 

The failure criterion being adopted for the axial fatigue tests was the 
complete separation of the specimens. In contrast, fatigue failures under 
torsion were defined by 20% stiffness drop. Run-out tests were stopped 
at 2⋅106 cycles. 

The results generated according to the experimental protocol 
described above are summarised in the stress range vs. number of cycles 
to failure diagrams reported in Fig. 6. The graphs summarising the re-
sults generated by testing the notched specimens are plotted in terms of 
range of the stress referred to the nominal net area, Δσnet. 

The scatter bands plotted in the diagrams of Fig. 6 were determined 
by assuming a log-normal distribution of the cycles to failure for any 
stress level, with the confidence being set equal to 95 % [54]. The level 
of scattering characterising these bands was evaluated in terms of ratio 
between the endurance limits determined for 10 % and 90 % probability 
of survival - Tσ for the uniaxial case and Tτ for the torsional case. The 
results from the statistical reanalyses are reported in Table 1 in terms of 
endurance limit amplitude (σA, σAn or τA) at NA= 106 cycles to failure, 
negative inverse slope (k or k0) and scatter level (Tσ or Tτ). 

5.2. Fretting fatigue testing and results 

The fretting fatigue results utilised to validate the design approach 
formulated in Section 4 were generated in the Materials Testing Labo-
ratory of the University of Sheffield using the cruciform hydraulic 
biaxial machine seen in Fig. 7a. This machine allows two horizontal 
actuators and two vertical actuators to be controlled independently. 
Each actuator has a load capacity of 100 kN and a displacement of 
± 25 mm. In the fretting fatigue testing configuration, the horizontal 
actuators are used to apply a CA/VA axial cyclic force to a flat dog-bone 
specimen (Fig. 7b). The vertical actuators are used instead to push 
(either statically or cyclically) two fretting pads against the flat speci-
mens. Accordingly, the static/time-variable forces applied to run the 
fretting fatigue tests are controlled both along a horizontal direction and 
along a vertical direction. Since the two vertical actuators are equipped 
with two independent loading cells, the controller is capable of detecting 
variation in the contact arrangement between each pad and the associ-
ated fretted surface. 

The machine is designed so that both the fretting pads and the 
specimens can be removed and replaced, with this allowing new pads to 
be used for each individual test being run. 

In terms of testing set-up, specimens and pads were aligned by simply 
using standard gauge blocks/reference plates that were directly attached 
to the frame of the testing machine. 

Before implementing the planned campaign of experiments, the ac-
curacy and reliability of our fretting fatigue testing rig was checked 
extensively using specific instrumented specimens and pads that were 
equipped with a series of strain gauges. In particular, according to 
Fig. 7c, a set of strain gauges was attached to the lateral surfaces of the 
calibration specimens, whereas a second set of specimens was attached 
to the two flat faces of the upper part of the instrumented pads. The 
calibration constants linking, via a simple linear relationship, the 
magnitude of applied force with the resulting local strains were deter-
mined by using a standard axial testing machine. The calibration con-
stants for the specimens were determined both under tension and under 
compression, with the constant for the instrumented pads being deter-
mined solely under compression. The strain gauges attached to the 
lateral surfaces of the dog-bone specimens and those attached to the 
pads were used to assess the machine’s accuracy and reliability in 
controlling the horizontal and vertical actuators, respectively. This 
standard validation procedure allowed us to compare systematically the 
feedback signals used by the controller of the testing machine with the 
corresponding information gathered via the strain gauges attached to 
the calibration specimens as well as to the calibration pads. 

The fretting fatigue results of interest were generated by testing dog- 
bone flat specimens having, in the gauge region, thickness equal to 
9 mm and width to 10 mm. Two batches of samples were machined 
using CI 40054 and CI 40060, respectively. 

The fretting cylindrical pads being used were made of either CI 
40054 or steel, with the steel being coated with zinc phosphate. The 
pads had thickness equal to 12 mm, height equal to 15 mm, length equal 
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to 40 mm and contact radius, Rp equal to either 20 mm, 75 mm or 
100 mm. Intentionally, the pads were larger than the width of the 
specimens. This allowed us to have a more uniform distribution of the 
stress in the contact region during testing, with this minimising the ef-
fect of potential stress concentration phenomena occurring at the lateral 
surfaces. 

To generate the results under CA fretting fatigue loading, each in-
dividual specimen was first clamped using the two mechanical grips 

attached to the horizontal actuators. Subsequently, the two cylindrical 
pads were pushed against the specimen by applying a normal load, P(t). 
During CA testing, this normal load was either kept constant or varied 
sinusoidally. A CA sinusoidal load F(t) (characterised by a load ratio, R, 
equal to either −1 or 0.1) was then applied to one end of the specimens, 
while the other end was kept fixed in displacement control. Sinusoidal 
force F(t) was applied at a frequency of 10 Hz. In those tests run by 
making normal load vary over time, force signals P(t) and F(t) were in- 

Fig. 6. Fatigue results generated under axial loading and torsion by testing plain and notched specimens of Cast Iron 40054 and of Cast Iron 40,060.  
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phase. The failure criterion adopted to define the number of cycles to 
failure, Nf, was the complete separation of the specimens. 

The results generated under CA fretting fatigue loading are sum-
marised in Table 2 in terms of: specimen material; pad material; pad 
radius, Rp; amplitude, Pa, and mean value, Pm, of sinusoidal normal force 
P(t); amplitude, Fa, and mean value, Fm, of sinusoidal axial force F(t); 
and experimental number of cycles to failure, Nf. 

The results under VA fretting fatigue loading were generated by 
pushing the two cylindrical pads against the fretting specimen by a static 
normal load, Pm. A VA sinusoidal load signal, F(t), was then applied (at a 
frequency of 10 Hz) to one end of the sample, with the other end being 
kept fixed. The two VA load histories used in the present investigation 
are summarised in Table 3 in terms of ratio between the force amplitude 
characterising the i-th stress level, Fa,i, and the maximum amplitude of 
the force in the spectrum, Fa,max. Further, Table 3 reports also the 
number of cycles, ni, associated with any stress level forming the two 
spectra considered. Load spectrum A had a length, LS =

∑
ni, equal to 50 

cycles and it was applied exploring load ratios equal to both − 1 and 0. 
Load spectrum B instead had LS equal to 40 cycles and it was applied by 
setting the load ratio invariably equal to − 1. All the experimental re-
sults under VA fretting fatigue loading were generated by applying the 
cycles in random order, with the adopted failure criterion being again 
the complete breakage of the specimens. 

The experimental results generated under VA fretting fatigue loading 
are summarised in Table 4 in terms of: specimen material; pad material; 
pad radius, Rp; load spectrum; static value of the normal force, Pm; 
maximum amplitude of the axial force, Fa,max, in the load history; load 
ratio characterising the applied VA load spectrum, R; and experimental 
number of blocks to failure, Nb. 

It is worth concluding by observing that inspection of the fracture 
surfaces revealed that, as expected, the vast majority of the fatigue 
cracks initiated at the edge of the contact zone. This observation held 
true under both CA and VA fretting fatigue loading. Fig. 7d shows four 
representative examples of the typical cracking behaviour displayed by 
the tested iron-carbon alloys. 

6. Validation 

6.1. Estimation of the constants in the MWCM’s governing equations 

To assess the accuracy of the proposed fretting fatigue design 
methodology against the experimental results listed in Tables 2 and 4, 
the first step was to calibrate the MWCM governing equations. To this 
end, Eqs. (12a) to (13b) were calibrated via the plain fully-reversed 
endurance limits (extrapolated at NA=106 cycles to failure) and the 
corresponding negative inverse slopes listed in Table 1. 

The plain material fully reversed endurance limits were used also to 
estimate the limit value of the effective critical plane stress ratio, ρlim. 
Since, according to Eq. (14), ρlim was calculated to be slightly lower than 
unity, as recommended in Ref. [55], it was set equal to unity for both CI 
40054 and CI 40060. 

The plain fatigue curves determined under a load ratio equal to 0.1 
(see Table 1) were employed to calculate the mean stress sensitivity 
index, m, for the two materials under investigation. In particular, m was 
estimated via the following relationship [40,45]: 

m =
τ∗

a

σ∗
n,m

(

2 •
τA − τ∗

a

2τA − σA
−

σ∗
n,a

τ∗
a

)

(24)  

where τ∗a , σ∗
n,m, and σ∗

n,a are the stress components relative to the critical 
plane at the endurance limit condition [40]. This simple calculation 
returned a mean stress sensitivity index equal to 0.141 for CI 40054 and 
to 0.146 for CI 40060. 

Finally, the MWCM was applied to post-process the results generated 
under VA fretting fatigue loading by correcting the design curve in the 
high-cycle fatigue regime using Eqs. (18a) and (18b), with Nkp being 
taken equal to 107 cycles to failure. 

6.2. Estimation of the constants in the LM vs Nf relationship 

The sketches of Fig. 8 explain the procedure that was used to esti-
mate, for the two materials under investigation, constants A and B in the 
critical distance vs. number of cycles to failure relationship, Eq. (15) [40, 
44]. According to Fig. 8 material fatigue constants A and B can directly 
be estimated from the plain fatigue curve and from a fatigue curve 
determined experimentally by using specimens weakened by a notch 
having known profile. In this context, it is worth recalling here that 
experimental evidence suggests that the notch fatigue curve used to 
calibrate function LM(Nf) should be generated by testing specimens 
containing notches that are as sharp as possible [56]. 

Turning back to Fig. 8, initially attention can be focused on a specific 
number of cycles to failure, i.e. Nf* in Fig. 8a. According to the schematic 
Wöhler diagram of Fig. 8a, the range of the stress cracking the 
unnotched material at Nf* cycles to failure is equal to Δσ. In a similar 
way, by focusing attention on the notch fatigue curve it is straightfor-
ward to estimate the range of the nominal stress, Δσnet, resulting in a 
fatigue failure again at Nf* cycles to failure. Given the notched geometry 
under investigation, the linear-elastic stress field along the notch 
bisector can be determined either numerically or analytically, where this 
stress field is to be estimated by setting the nominal stress equal to Δσnet 
(Fig. 8b). According to the PM [7], the distance from the notch tip at 
which the range of the linear-elastic stress is equal to the stress range, 
Δσ, breaking the unnotched material at Nf* cycles to failure is equal to 
LM(Nf)/2 (Fig. 8b). Based on this simple procedure, the critical distance 
value can then be estimated for different values of Nf* so that constants 
A and B in Eq. (15) can be determined unambiguously. 

The procedure briefly describe above was used to determine con-
stants A and B for the two iron-carbon alloys under investigation, with 
this being done by taking advantage of the plain and notch fully- 
reversed uniaxial fatigue curves reported in Fig. 6. To this end, the 
relevant linear-elastic stress fields in the notched specimens were 
determined numerically using commercial Finite Element (FE) code 

Table 1 
Summary of the experimental results generated under axial loading and torsion by testing plain and notched specimens of CI 40054 and of CI 40060.  

Material Load type Specimen type Number of tests R σA
a, σAn

a,b τA
a k k0 Tσ Tτ 

[MPa] [MPa] 

Cast Iron 40054 Axial Plain  14  -1  96.6    7.7    1.246   
Axial Plain  12  0.1  63.1    10.4    1.244   
Axial Notched  11  -1  54.0    6.6    1.510   
Torsion Plain  11  -1    145.8    6.9    1.318 

Cast Iron 40060 Axial Plain  13  -1  71.7    6.8    1.317   
Axial Plain  14  0.1  48.8    9.4    1.322   
Axial Notched  13  -1  51.9    6.2    1.338   
Torsion Plain  10  -1    100.0    6.6    1.637  

a Endurance limit amplitude extrapolated at NA= 106 cycles to failure 
b Endurance limit amplitude referred to the nominal net area 
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Ansys®. In more detail, the notched specimens were modelled using 
simple 2D linear-elastic elements. The mesh density in the notch region 
was increased gradually until convergence occurred. This hybrid 
experimental/numerical approach returned the following values for 
constants A and B in the LM vs. Nf relationship: 

LM
(
Nf

)
= 1.218 • N−0.042

f [mm] for CI40054 (25)  

LM
(
Nf

)
= 1.672 • N−0.032

f [mm] for CI40060 (26)  

Fig. 7. Fretting fatigue test rig (a); specimen and fretting pads (b); set-up used for the calibration (c); examples of fretting fatigue cracks (d).  
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6.3. Numerical stress analysis 

The necessary stress analyses were carried out using FE code Ansys® 
Workbench by modelling half of the fretting specimen and one pad. 

Three specific models were solved, i.e. FE models with pad radius, RP, 
equal to 100 mm (CI 40054/coated steel), to 75 mm (CI 40060/CI 
40054) and to 20 mm (CI 40054/coated steel). The specimens were 
modelled using 2D 4-node structural element PLANE182, with the so-
lutions being calculated under a plane strain condition. In particular, the 
relevant linear-elastic stress fields in the contact region were determined 
at the mid-section of the specimens by assuming that the associated 
stress triaxiality was due to a fully-developed plane strain distribution. 

As an example, Fig. 9 summarises the numerical procedure followed 
to determine the relevant local linear-elastic stress fields in the speci-
mens of CI 40054 with a RP = 20 mm pad of zinc phosphate coated steel. 

In the models, the height of the pad was taken equal to ten times the 
contact semi-width to ensure that the boundary conditions applied to 
the top of the pad itself did not affect the distribution of the pressure [1]. 
The virtual specimens were constrained to deform along the x-axis, with 
all the degrees of freedom being constrained for the edge vertical plane 
on the left-hand side (Fig. 9b). For the pads, the boundary conditions to 
the vertical lateral surfaces were applied so that the pads could move 
solely along a vertical direction (Fig. 9c). 

The contact region was modelled by defining the contact interface 
between pad and specimen as “frictional contact pair”. According to the 
design experience gained at the sponsoring company (www.cummins. 

Table 2 
Experimental results generated under CA fretting fatigue loading.  

Specimen material Pad materiala Rp Pa Pm Fa Fm Nf 

[mm] [kN] [kN] [kN] [kN] [Cycles] 

CI 40054 ZPcS  20  0  5.5  8.00  9.78 970,764 
CI 40054 ZPcS  20  0  5.5  9.00  11.00 1,107,093 
CI 40054 ZPcS  20  0  5.5  9.50  11.61 347,554 
CI 40054 ZPcS  20  0  5.5  10.00  12.22 328,400 
CI 40054 ZPcS  20  0  5.5  10.50  12.83 368,132 
CI 40054 ZPcS  20  0  5.5  11.00  13.44 193,466 
CI 40054 ZPcS  20  0  5.5  12.00  14.67 166,731 
CI 40054 ZPcS  20  0  5.5  16.00  19.56 86,731 
CI 40054 ZPcS  20  0  5.5  7.00  0 32,788 
CI 40054 ZPcS  20  0  5.5  6.50  0 86,847 
CI 40054 ZPcS  20  0  5.5  6.25  0 130,733 
CI 40054 ZPcS  20  0  5.5  6.00  0 547,361 
CI 40054 ZPcS  20  0  5.5  5.00  0 1053,934 
CI 40054 ZPcS  100  0  5.5  7.00  0 21,619 
CI 40054 ZPcS  100  0  5.5  6.50  0 28,086 
CI 40054 ZPcS  100  0  5.5  6.25  0 44,523 
CI 40054 ZPcS  100  0  5.5  6.00  0 47,932 
CI 40054 ZPcS  100  0  5.5  5.50  0 111,079 
CI 40054 ZPcS  100  0  5.5  5.00  0 199,438 
CI 40054 ZPcS  100  0  5.5  4.75  0 138,909 
CI 40060 CI 40054  75  0  5.0  8.00  0 29,670 
CI 40060 CI 40054  75  0  5.0  7.00  0 59,770 
CI 40060 CI 40054  75  0  5.0  6.50  0 42,985 
CI 40060 CI 40054  75  0  4.0  9.00  0 23,653 
CI 40060 CI 40054  75  0  3.5  6.25  0 133,335 
CI 40060 ZPcS  75  0  4.0  3.50  0 1,703,890 
CI 40060 ZPcS  75  0  4.0  4.00  0 1,218,640 
CI 40060 ZPcS  75  0  4.0  4.75  0 283,325 
CI 40060 ZPcS  75  0  4.0  5.00  0 351,381 
CI 40060 ZPcS  75  0  4.0  5.50  0 173,542 
CI 40060 ZPcS  75  0  4.0  6.00  0 53,257 
CI 40060 CI 40054  75  0.5  4.0  5.50  0 208,500 
CI 40060 CI 40054  75  0.5  5.0  6.50  0 65,650 
CI 40060 CI 40054  75  0.5  5.0  6.00  0 124,504 
CI 40060 CI 40054  75  0.5  5.0  9.50  0 17,788 
CI 40060 CI 40054  75  0.5  5.0  7.00  0 52,773 
CI 40060 CI 40054  75  1  6.0  7.50  0 50,297 
CI 40060 ZPcS  75  0.5  5.0  6.00  0 77,000 
CI 40060 ZPcS  75  0.5  5.0  5.50  0 135,000 
CI 40060 ZPcS  75  0.5  5.0  5.00  0 338,697 
CI 40060 ZPcS  75  0.5  5.0  4.50  0 397,873 
CI 40060 ZPcS  75  0.5  5.0  4.00  0 705,000 
CI 40060 ZPcS  75  0.5  5.0  4.25  0 561,658 
CI 40060 ZPcS  75  0.5  5.0  4.75  0 450,562  

a ZPcS = Zinc Phosphate coated Steel 

Table 3 
Force amplitude distribution and stepping characterising the adopted load 
spectra.  

Load Spectrum A Load Spectrum B 

R= −1, 0 R= −1 

Fa,i/Fa,max ni Fa,i/Fa,max ni 

[Cycles] [Cycles] 

1  6  1  5 
0.9  5  0.9  5 
0.8  5  0.8  5 
0.7  9  0.7  10 
0.6  7  0.6  10 
0.5  8  0.5  5 
0.4  5     
0.3  5     
LS= 50 cycles LS= 40 cycles  
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com) with the iron-carbon alloys used, the friction coefficient was set 
equal to 0.45 for the coated steel-to-CI 40054 contact and to 0.4 for the 
CI 40054-to-CI 40060 contact. These values for the friction coefficients 
are in agreement with the values reported by is Mutoh and Tanaka [57] 
for different contact combinations involving both steel and cast iron. 

The contact between the fretting pad and the specimen was defined 
using the target-contact algorithm that is available in Ansys® Work-
bench. In particular, the top surface of the specimen was defined as the 
target body while the circular surface of the pad defined as the contact 
body. In order to define the behaviour of the contact, the Augmented 

Lagrange algorithm was included in the frictional contact region. 
Having defined the three models, a mesh convergence study was 

carried out to determine the optimum mesh size to be used in the contact 
region. The loading sequence used for this purpose was based on three 
subsequent steps. Initially, the pad was moved downward to establish 
the contact with the specimen. Subsequently, a normal pressure was 
applied to the upper surface of the pad (Fig. 9c). Finally, a force was 
applied to the right-hand side of the specimen (Fig. 9c). The mesh 
convergence analysis was implemented by using from 5 up to 60 ele-
ments along the contact half-width, with a relatively coarser mesh being 
used away from the contact zone. A quadrilateral map mesh was 
employed to model both the pad and the specimen. At the end of any 
simulation, the normal stress components were extracted along the 
contact surface of the specimen and then used to assess the effect of the 
mesh density on the relevant stress distributions. Based on the results 
from this standard convergence analysis, the numerical stress analyses 
associated with the specimens being tested were performed by using 
along the contact half-width in between 20 and 40 elements, this cor-
responding to a mesh size ranging between 11 µm and 15 µm (Fig. 9d). 

Finally, the accuracy and reliability of the optimised FE models was 
further checked by comparing the results from the numerical solutions 
with the corresponding results from the classic analytical solution due to 
Hertz. This was done in terms of contact half-width length and contact 
pressure distribution. The sound agreement between numerical and 
analytical solution further confirmed the validity of the FE models that 
were used to perform the necessary local linear-elastic stress analyses. 

Table 4 
Experimental results generated under VA fretting fatigue loading.  

Specimen material Pad materiala Rp Load Spectrum Pm Fa,max R Nb 

[mm] [kN] [kN] [Blocks] 

CI 40054 ZPcS  20 A  5.5  7.50  -1 3223 
CI 40054 ZPcS  20 A  5.5  7.00  -1 7516 
CI 40054 ZPcS  20 A  5.5  6.50  -1 3384 
CI 40054 ZPcS  20 A  5.5  6.25  -1 6480 
CI 40054 ZPcS  20 A  5.5  6.00  -1 9525 
CI 40054 ZPcS  20 A  5.5  5.75  -1 23,659 
CI 40054 ZPcS  20 A  5.5  8.00  0 85,924 
CI 40054 ZPcS  20 A  5.5  9.00  0 20,449 
CI 40054 ZPcS  20 A  5.5  9.50  0 26,998 
CI 40054 ZPcS  20 A  5.5  10.00  0 9180 
CI 40054 ZPcS  20 A  5.5  12.00  0 5784 
CI 40054 ZPcS  100 A  5.5  5.75  -1 12,503 
CI 40054 ZPcS  100 A  5.5  6.00  -1 7223 
CI 40054 ZPcS  100 A  5.5  7.00  -1 3699 
CI 40054 ZPcS  100 A  5.5  7.50  -1 1712 
CI 40054 ZPcS  100 A  5.5  8.00  -1 1060 
CI 40054 ZPcS  100 A  5.5  9.00  0 45,281 
CI 40054 ZPcS  100 A  5.5  9.50  0 23,415 
CI 40054 ZPcS  100 A  5.5  10.00  0 39,964 
CI 40054 ZPcS  100 A  5.5  14.00  0 11,361 
CI 40054 ZPcS  100 A  5.5  16.00  0 5360 
CI 40060 CI 40054  75 B  5.0  8.00  -1 3050 
CI 40060 CI 40054  75 B  5.0  9.00  -1 2480 
CI 40060 CI 40054  75 B  5.0  7.00  -1 2921 
CI 40060 CI 40054  75 B  5.0  6.00  -1 13,000 
CI 40060 CI 40054  75 B  5.0  5.50  -1 29,465 
CI 40060 CI 40054  75 B  5.0  5.25  -1 33,039 
CI 40060 CI 40054  75 B  5.0  6.50  -1 8981 
CI 40060 CI 40054  75 B  5.0  6.75  -1 5867 
CI 40060 ZPcS  75 B  6.0  7.00  -1 2548 
CI 40060 ZPcS  75 B  6.0  6.50  -1 3658 
CI 40060 ZPcS  75 B  6.0  6.00  -1 3643 
CI 40060 ZPcS  75 B  6.0  5.50  -1 18,279 
CI 40060 ZPcS  75 B  6.0  5.00  -1 25,897 
CI 40060 ZPcS  75 B  6.0  4.50  -1 44,481 
CI 40060 ZPcS  75 B  6.0  4.00  -1 125,000  

a ZPcS = Zinc Phosphate coated Steel. 

Fig. 8. Procedure to calibrate the material fatigue constants in the critical 
distance vs. number of cycles to failure relationship. 
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6.4. Accuracy 

The FE models produced as described in the previous sub-section 
were used to post-process the experimental results summarised in Ta-
bles 2 and 4. In particular, these FE models were employed to determine 
the sub-surface distribution of the linear-elastic stress in the contact 
region of the specimens made of CI 40054 as well as of CI 40060. Ac-
cording to Figs. 3a and 3b, the focus paths were taken coincident with a 
straight line emanating from the leading edge of the contact zone and 
perpendicular to the contact surface itself. 

The MWCM method’s governing equations were calibrated as 
described in Section 6.1, with the LM vs. Nf relationships being defined 
according to Eqs. (25) and (26). 

The results generated under CA fretting fatigue loading and sum-
marised in Table 2 were post-processed according to the approach 
described in Figs. 3 and 4. In contrast, the tests run under VA fretting 
fatigue loading that are summarised in Table 3 were post-process 
following the procedure described in Figs. 3 and 5. It is important to 
point out here that, as recommended by Palmgren [30] and Miner [31], 
the estimates under VA fretting fatigue loading were obtained by simply 
setting the critical value of the damage sum equal to unity. 

The overall accuracy that was obtained by using the proposed design 
methodology to predict the results summarised in Tables 2 and 4 is 
summarised in the experimental, Nf, vs. estimated, Nf,e, number of cycles 

to failure diagram reported in Fig. 10. It can be seen from this error chart 
that the estimates all fall within an error factor of 2, with this holding 
true independently of material, pad radius and complexity of the applied 
fretting fatigue load history. This supports the idea that the methodology 
summarised in Figs. 3 to 5 is a powerful tool suitable for designing real 
mechanical assemblies against CA and VA fretting fatigue loading. 

7. Conclusions 

The present paper deals with the accuracy and reliability in esti-
mating fretting fatigue lifetime of the MWCM applied along with the 
τ-MVM and the PM. The validation exercise being carried out was based 
on a large set of experimental results that were generated at the Uni-
versity of Sheffield, UK, under both CA and VA fretting fatigue loading. 
The specimens used in this campaign of experiments were made of two 
grey cast irons, i.e. CI 40054 and CI 40060. 

The material properties that were needed to apply the proposed 
fretting fatigue lifetime estimation technique were determined experi-
mentally by running conventional uniaxial and torsional fatigue tests. 

The generated experimental results were post-processed by deter-
mining the relevant linear-elastic stress fields in the contact regions by 
using commercial FE software Ansys® Workbench. 

Based on this validation exercise, the most relevant conclusions are 
summarised in the following bullet points. 

Fig. 9. Specimen with RP = 20 mm pad: example of the numerical procedure followed to calculate the local linear-elastic stress fields in the contact region.  
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• Owing to its specific features, the approach formulated and validated 
in the present paper can be used to design real mechanical assemblies 
against CA/VA fretting fatigue loading by directly post-processing 
the relevant stress fields determined through conventional linear- 
elastic FE analyses.  

• The use of the MWCM applied in conjunction with the τ-MVM and 
the PM returned estimates falling within an error factor of ± 2.  

• A very high level of accuracy can be reached provided that the 
proposed fretting fatigue design technique is calibrated by running 
appropriate experiments.  

• As postulated by the classic theory due to Palmgren [30] and Miner 
[31], the lifetime under VA fretting fatigue loading of the tested 
iron-carbon alloys was estimated by setting the critical value of the 
damage sum invariably equal to unity.  

• As far as VA fretting fatigue is concerned, more work needs to be 
done to devise a sound methodology allowing the critical value of the 
damage sum to be quantified in a rigorous, standardised way. 
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