A nutrient-limited model for avascular cancer growth including cell
proliferation, motility and death is presented. The model qualitatively
reproduces commonly observed morphologies for primary tumors, and the simulated
patterns are characterized by its gyration radius, total number of cancer
cells, and number of cells on tumor periphery. These very distinct
morphological patterns follow Gompertz growth curves, but exhibit different
scaling laws for their surfaces. Also, the simulated tumors incorporate a
spatial structure composed of a central necrotic core, an inner rim of
quiescent cells and a narrow outer shell of proliferating cells in agreement
with biological data. Finally, our results indicate that the competition for
nutrients among normal and cancer cells may be a determinant factor in
generating papillary tumor morphology.Comment: 9 pages, 6 figures, to appear in PR