1,843 research outputs found

    Orientation dependent current-induced motion of skyrmions with various topologies

    Full text link
    We study the current-driven motion of metastable localized spin structures with various topological charges in a (Pt1−x_{1-x}Irx_{x})/Fe bilayer on a Pd(111) surface by combining atomistic spin model simulations with an approach based on the generalized Thiele equation. We demonstrate that besides a distinct dependence on the topological charge itself the dynamic response of skyrmionic structures with topological charges Q=−1\mathrm{Q} = -1 and Q=3\mathrm{Q}= 3 to a spin-polarized current exhibits an orientation dependence. We further show that such an orientation dependence can be induced by applying an in-plane external field, possibly opening up a new pathway to the manipulation of skyrmion dynamics

    Unfaithful Glitch Propagation in Existing Binary Circuit Models

    Get PDF
    We show that no existing continuous-time, binary value-domain model for digital circuits is able to correctly capture glitch propagation. Prominent examples of such models are based on pure delay channels (P), inertial delay channels (I), or the elaborate PID channels proposed by Bellido-D\'iaz et al. We accomplish our goal by considering the solvability/non-solvability border of a simple problem called Short-Pulse Filtration (SPF), which is closely related to arbitration and synchronization. On one hand, we prove that SPF is solvable in bounded time in any such model that provides channels with non-constant delay, like I and PID. This is in opposition to the impossibility of solving bounded SPF in real (physical) circuit models. On the other hand, for binary circuit models with constant-delay channels, we prove that SPF cannot be solved even in unbounded time; again in opposition to physical circuit models. Consequently, indeed none of the binary value-domain models proposed so far (and that we are aware of) faithfully captures glitch propagation of real circuits. We finally show that these modeling mismatches do not hold for the weaker eventual SPF problem.Comment: 23 pages, 15 figure

    Temperature scaling of the Dzyaloshinsky-Moriya interaction in the spin wave spectrum

    Get PDF
    The temperature scaling of the micromagnetic Dzyaloshinsky-Moriya exchange interaction is calculated for the whole range of temperature. We use Green's function theory to derive the finite-temperature spin wave spectrum of ferromagnetic systems described by a classical atomistic spin model Hamiltonian. Within this model, we find universal expressions for the temperature scaling not only of the Dzyaloshinsky-Moriya interaction but also of the Heisenberg exchange stiffness and the single-ion anisotropy. In the spirit of multiscale models, we establish a clear connection between the atomistic interactions and the temperature-dependent coefficients in the spin wave spectrum and in the micromagnetic free energy functional. We demonstrate that the corrections to mean-field theory or the random phase approximation for the temperature scaling of Dzyaloshinsky-Moriya and Heisenberg exchange interactions assume very similar forms. In the presence of thermal fluctuations and Dzyaloshinsky-Moriya interaction an anisotropy-like term emerges in the spin wave spectrum which, at low temperature, increases with temperature, in contrast to the decreasing single-ion anisotropy. We evaluate the accuracy of the theoretical method by comparing it to the spin wave spectrum calculated from Monte Carlo simulations.Comment: 11 pages, 4 figure

    Reduced thermal stability of antiferromagnetic nanostructures

    Full text link
    Antiferromagnetic materials hold promising prospects in novel types of spintronics applications. Assessing the stability of antiferromagnetic nanostructures against thermal excitations is a crucial aspect of designing devices with a high information density. Here we use theoretical calculations and numerical simulations to determine the mean switching time of antiferromagnetic nanoparticles in the superparamagnetic limit. It is demonstrated that the thermal stability is drastically reduced compared to ferromagnetic particles in the limit of low Gilbert damping, attributed to the exchange enhancement of the attempt frequencies. It is discussed how the system parameters have to be engineered in order to optimize the switching rates in antiferromagnetic nanoparticles.Comment: 12 pages, 6 figures. Supplemental Videos available with the published versio

    Spin waves cause non-linear friction

    Get PDF
    Energy dissipation is studied for a hard magnetic tip that scans a soft magnetic substrate. The dynamics of the atomic moments are simulated by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. The local energy currents are analysed for the case of a Heisenberg spin chain taken as substrate. This leads to an explanation for the velocity dependence of the friction force: The non-linear contribution for high velocities can be attributed to a spin wave front pushed by the tip along the substrate.Comment: 5 pages, 9 figure

    Spin waves cause non-linear friction

    Full text link
    Energy dissipation is studied for a hard magnetic tip that scans a soft magnetic substrate. The dynamics of the atomic moments are simulated by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. The local energy currents are analysed for the case of a Heisenberg spin chain taken as substrate. This leads to an explanation for the velocity dependence of the friction force: The non-linear contribution for high velocities can be attributed to a spin wave front pushed by the tip along the substrate.Comment: 5 pages, 9 figure

    Magnetic field control of the spin Seebeck effect

    Full text link
    The origin of the suppression of the longitudinal spin Seebeck effect by applied magnetic fields is studied. We perform numerical simulations of the stochastic Landau-Lifshitz-Gilbert equation of motion for an atomistic spin model and calculate the magnon accumulation in linear temperature gradients for different strengths of applied magnetic fields and different length scales of the temperature gradient. We observe a decrease of the magnon accumulation with increasing magnetic field and we reveal that the origin of this effect is a field dependent change of the frequency distribution of the propagating magnons. With increasing field the magnonic spin currents are reduced due to a suppression of parts of the frequency spectrum. By comparison with measurements of the magnetic field dependent longitudinal spin Seebeck effect in YIG thin films with various thicknesses, we find that our model describes the experimental data very well, demonstrating the importance of this effect for experimental systems

    Interfacial exchange interactions and magnetism of Ni2MnAl/Fe bilayers

    Full text link
    Based on a multi-scale calculations, combining ab-initio methods with spin dynamics simulations, we perform a detailed study of the magnetic behavior of Ni2MnAl/Fe bilayers. Our simulations show that such a bilayer exhibits a small exchange bias effect when the Ni2MnAl Heusler alloy is in a disordered B2 phase. Additionally, we present an effective way to control the magnetic structure of the Ni2MnAl antiferromagnet, in the pseudo-ordered B2-I as well as the disordered B2 phases, via a spin-flop coupling to the Fe layer.Comment: 7 pages, 6 figure
    • …
    corecore