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The temperature scaling of the micromagnetic Dzyaloshinsky-Moriya exchange interaction is calculated
from saturated to vanishing magnetization. We use Green’s function theory to derive the finite-temperature
spin wave spectrum of ferromagnetic systems described by a classical atomistic spin model Hamiltonian with
temperature-independent parameters. Within this model, we find universal expressions for the temperature scaling
not only of the Dzyaloshinsky-Moriya interaction but also of the Heisenberg exchange stiffness and the single-ion
anisotropy. In the spirit of multiscale models, we establish a clear connection between the atomistic interactions
and the temperature-dependent coefficients in the spin wave spectrum and in the micromagnetic free-energy
functional. We demonstrate that the corrections to mean-field theory or the random phase approximation for the
temperature scaling of Dzyaloshinsky-Moriya and Heisenberg exchange interactions have very similar forms.
In the presence of thermal fluctuations and Dzyaloshinsky-Moriya interaction an anisotropylike term emerges
in the spin wave spectrum which, at low temperature, increases with temperature, in contrast to the decreasing
single-ion anisotropy. We evaluate the accuracy of the theoretical method by comparing it to the spin wave
spectrum calculated from Monte Carlo simulations.
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I. INTRODUCTION

Chirality in magnetic systems appears due to the broken
inversion symmetry of the crystal. Microscopically, it stems
from a relativistic exchange interaction between magnetic
moments known as the Dzyaloshinsky-Moriya interaction
[1,2]. Originally introduced to account for the weak magnetic
moment of some antiferromagnetic systems [1], it has been
demonstrated that this type of coupling gives rise to chiral
spin structures ranging from domain walls [3,4], through spin
spirals [5,6], to magnetic skyrmions [7–9]. As Dzyaloshinsky-
Moriya interaction results from spin-orbit interactions, it
represents a substantial aspect of a new field of research
called spin-orbitronics, with potential applications in future
spintronic devices [10–12].

Besides influencing static spin configurations, the
Dzyaloshinsky-Moriya interaction also lends a chiral character
to the magnetic excitations of the system, which are known
as magnons or spin waves. In ferromagnetic systems, this is
observable in the shift of the minimum of the parabolic spin
wave dispersion relation away from the k = 0 point, thereby
lifting the energy degeneracy between magnons propagating
in opposite directions [13,14]. Common experimental methods
for determining this asymmetry include neutron scattering for
bulk magnets [15,16], as well as Brillouin light scattering
[17,18], spin-polarized electron energy loss [19–21], and
propagating spin wave spectroscopy [22] for thin films. Recent
theoretical investigations based on the micromagnetic model
have proposed magnonic devices based on the chiral character
of spin waves [23,24].
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In spin glasses it has been demonstrated that the addition of
nonmagnetic heavy-metal impurities enhances the anisotropy
field. This effect has also been attributed to the presence of
the Dzyaloshinsky-Moriya interaction in connection with the
noncollinear alignment of the spins in spin glasses [25,26]. The
chiral interaction is also responsible for the canting of spins at
the edges of nanomagnets, which also induces an anisotropy
field competing with demagnetization effects [27]. However,
the Dzyaloshinsky-Moriya interaction does not influence the
orientation of the ground state in extended ferromagnetic
systems [13,14], since in this case all spins are parallel to
each other.

Significant research attention has been turned towards in-
vestigating phase transitions [8,9] and determining the lifetime
of metastable spin structures [28–30] in chiral systems at finite
temperature. The microscopic background of such relaxation
mechanisms is the thermal fluctuation of localized magnetic
moments, leading to a reduced magnetization at higher
temperature. Micromagnetic models rely on the approximation
that the magnetization is only slowly varying over the sample,
leading to an effective averaging of the magnetic moments over
small volumes. During this averaging, it is necessary to take
into account the temperature dependence of the magnetization
as well as that of the effective interaction parameters. These
effective interaction parameters are crucial for understanding
phase transitions and lifetimes of metastable states.

Notably, dynamic properties can be calculated through
finite-temperature approaches, such as the Landau-Lifshitz-
Bloch equation [31,32], that fundamentally rely on
temperature-dependent micromagnetic parameters. Such ap-
proaches are especially important in the emerging field of spin
caloritronics, concerning the interplay between spin, charge,
and heat degrees of freedom. It has been established that
domain wall motion in ferromagnets [33] and antiferromagnets
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[34] under thermal gradients is dominated by the so-called
entropic torque, defined by the temperature derivative of the
Heisenberg exchange stiffness. It is expected that further
dynamical effects appear in the presence of the Dzyaloshinsky-
Moriya interaction. For instance, in the field of ultrafast spin
dynamics the emergence of metastable magnetic textures was
demonstrated, such as vortex-antivortex pairs in Fe thin films
[35] or skyrmions in thin TbFeCo films [36]. Therefore, it is
important to develop theoretical methods for the calculation
of effective temperature-dependent parameters.

Analytical results for specific types of interaction parame-
ters are available in the literature, usually given as a power law
of the magnetization mκ . The most well-known example is the
κ = l(l + 1)/2 power law for lth-order single-ion magnetic
anisotropy [37]. For the Heisenberg exchange interaction,
most applications use the result of mean-field theory [17],
where it scales with the second power of the magnetization
m2; however, it has been demonstrated that corrections to this
approximation are necessary in most systems [38,39]. It has
also been demonstrated that the temperature dependence of
the two-ion or exchange anisotropy is similar to that of the
Heisenberg exchange [38], which leads to deviations from
the κ = l(l + 1)/2 power law if both single-ion and two-ion
anisotropies are present in a system [40,41].

In comparison, the temperature dependence of the
Dzyaloshinsky-Moriya interaction seems to be less explored,
and the implicit estimations provided so far do not fully agree
with each other. For instance, in Ref. [42] it was concluded that
the temperature dependence of the size of antiferromagnetic
skyrmions may be described by an expression containing
temperature-independent Dzyaloshinsky-Moriya interactions.
In contrast, a significant softening of the chiral interaction
was reported for ultrathin ferromagnetic films in Ref. [43].
In Ref. [44], it was found that the wavelength of spin
spirals, proportional to the ratio between the Heisenberg
and Dzyaloshinsky-Moriya interactions, is independent of the
temperature, implying a similar temperature scaling for the two
terms. The independence of the period of noncollinear order
on the temperature has also been demonstrated experimentally
in several systems [45–48]. Solving this kind of apparent dis-
crepancy requires theoretical methods that directly provide the
temperature scaling of both Heisenberg and Dzyaloshinsky-
Moriya micromagnetic exchange interactions.

Preliminary results along this line were provided in
Ref. [49], where the spin wave spectrum was calculated
for a ferromagnetic monolayer containing Dzyaloshinsky-
Moriya interaction, and the softening of the frequencies at
low temperature was described by linear spin wave theory.
Green’s function theory in statistical mechanics [50] provides
a more robust theoretical framework for the description of
thermal spin fluctuations and the finite-temperature spin wave
spectrum over wide temperature ranges in both quantum
and classical systems [51,52]. Originally developed for the
determination of the temperature scaling of the magnetization,
the method was naturally extended for calculating effective
temperature-dependent interaction parameters [51,53]. The
application of Green’s function theory to the Dzyaloshinsky-
Moriya interaction [54,55] so far has been restricted to
the random phase approximation [56], which neglects the
corrections appearing due to correlations between the spins
[38,51].

In this paper, we investigate the temperature dependence
of the Dzyaloshinsky-Moriya interaction in a ferromagnet.
Using Callen’s formulation of Green’s function theory [50],
we find significant corrections to mean-field theory or random
phase approximation due to transversal spin fluctuations.
These corrections have very similar forms for the Heisenberg
and Dzyaloshinsky-Moriya interactions, in agreement with
the microscopic description which derives the two quantities
from the same principle [2,17,25]. Furthermore, we demon-
strate that the Dzyaloshinsky-Moriya interaction induces an
anisotropylike term which increases the spin wave frequency
at zero wave vector, an effect which is only observable at
finite temperature in ferromagnets. By comparing the results
to Monte Carlo simulations, we demonstrate that the theory
successfully accounts for most of the fluctuation corrections.

II. FINITE-TEMPERATURE SPIN WAVE SPECTRUM

A. Green’s function theory

For the description of the magnetic system, we introduce
the classical atomistic spin Hamiltonian

H = −1

2

∑
i,j

Jij Si Sj − 1

2

∑
i,j

Dij (Si × Sj )

−
∑

i

Kzz
(
Sz

i

)2 − μs

∑
i

BzSz
i . (1)

Here the Si variables denote unit vectors, Jij is the
Heisenberg exchange interaction between atoms at sites i

and j , Dij is the Dzyaloshinsky-Moriya vector, Kzz is the
single-ion magnetocrystalline anisotropy, μs is the magnetic
moment, and Bz is the external magnetic field. The number
of spins in the lattice will be denoted by N . We will assume
that the ground state of the system is ferromagnetic along
the z direction. The interaction coefficients in Eq. (1) are
determined by microscopic electronic processes such as the
overlap between wave functions (direct exchange) or hopping
processes (superexchange [2,57]). In a multiscale description
[38], the coefficients in Eq. (1) may be determined from ab
initio calculations. It is not possible to consider the interplay
between the noncollinear spin arrangement and the electronic
structure [58] in the simple model presented here; therefore, we
will suppose that Jij ,Dij ,K

zz are independent of temperature
on the scale where magnetic ordering occurs.

For calculating the spectrum of spin wave excitations at
finite temperature, we will use the classical Green’s function
formalism [50,51], which results in a set of self-consistency
equations. The spin wave spectrum in Fourier space k reads

ωk(T ) = γ

μs

(J0 − Jk − iDk + 2Kzz + μsB
z), (2)

with γ = ge

2me
the electron’s gyromagnetic ratio and effective

temperature-dependent interaction parameters Jk,Dk,Kzz.
The correspondence between the temperature-dependent pa-
rameters and the interaction coefficients in the atomistic
Hamiltonian Eq. (1) can be expressed in real space i,j as

Jij = mJij + m

2
Jij Re〈S+

j S−
i 〉, (3)
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Dij = mDij + m

2
Jij Im〈S+

j S−
i 〉, (4)

Kzz = Kzz

(
m − m

2
〈S+

i S−
i 〉

)
+ m

4

∑
Ri−Rj

Dij Im〈S+
j S−

i 〉, (5)

where Dij denotes the z component of the Dzyaloshinsky-
Moriya vectors Dij . A detailed derivation of Eqs. (2)–(5)
including the definition of the Fourier transforms is given in
Appendix A.

Equations (2)–(5) must be solved self-consistently together
with the temperature scaling of the magnetization

m = 〈Sz〉 = coth
1

�
− �, (6)

where

� = 1

N

∑
k

γ

μs

kBT

ωk
. (7)

The transversal correlation function is given by

〈S−
k S+

−k〉 = 2m

N

γ

μs

kBT

ωk
. (8)

Following the multiscale description, Eqs. (3)–(5) will
be used to determine the temperature-dependent interaction
parameters in a micromagnetic model, which is based on
a continuum free-energy functional. For simplicity, here we
will only consider spin modulations along the x direction
which is perpendicular to the magnetization; a generalization
to more spatial dimensions can be found in Appendix B . The
free-energy density is given by

f =
∑

α

A (∂xS
α)2 + DL(S) − K zz(Sz)2 − MBzSz, (9)

where S denotes the unit length spin vector field,

L(S) = Sz∂xS
x − Sx∂xS

z (10)

is the linear Lifshitz invariant [1], and A ,D,K zz are the mi-
cromagnetic effective Heisenberg exchange, Dzyaloshinsky-
Moriya interaction, and anisotropy, respectively. The magne-
tization density reads

M (T ) = μs

υWS
m(T ), (11)

where υWS is the Wigner-Seitz volume occupied by a single
atom in the lattice.

Unlike the Jij , Dij , Kzz, and μs parameters in the atomistic
model, the A ,D,K zz,M coefficients appearing in the micro-
magnetic model are temperature-dependent. Their importance
lies in the fact that they are directly related to experimentally
observable quantities such as the macroscopic magnetization,
the domain wall width (δ ∝ √

A /K zz), skyrmion radius, or
spin spiral wavelength. Furthermore, in the presence of tem-
perature gradients it has been shown that analytical expressions
for thermomagnonic torques can be directly derived from
the temperature dependence of the micromagnetic Heisenberg
exchange [33,34].

Several methods have been proposed for connecting the
atomistic and micromagnetic parameters. For instance, A and
K zz can be calculated via the temperature dependence of the
domain wall width and free energy in an implicit way [38].

In this paper, we connect the quantities by comparing the spin
wave spectrum obtained from the two approaches. For spin
waves propagating along the x direction, expanding Eq. (2)
for long wavelengths (small k) yields the correspondence

A = 1

4

m

υWS

∑
Ri−Rj

Jij (xj − xi)
2, (12)

D = − m

2υWS

∑
Ri−Rj

Dij (xj − xi), (13)

K zz = m

υWS
Kzz, (14)

where Ri = (xi,yi,zi) stands for the position of the spin i in
the lattice. Thus, (xj − xi) corresponds to the distance between
the spins i and j along the x axis.

B. Discussion

Equations (3)–(5) together with (12)–(14) constitute the
main results of this paper. Using these expressions, it is
possible to directly connect first-principles calculations to
micromagnetic models in a multiscale approach. This pro-
cedure may enable bypassing time-consuming atomistic spin
model simulations for the determination of micromagnetic
parameters. The calculations may also be generalized to
quantum spins, which modifies the expressions Eqs. (6)–(8)
for the self-consistency by accounting for quantum statistics
[50] instead of the classical statistical limit considered here,
but leaves Eqs. (3)–(5) for the effective parameters essentially
unchanged.

The accuracy of Eqs. (3)–(5) is determined by the fluctu-
ation corrections, which were first suggested to be included
by Callen [50], with the appropriate classical limit given in
Refs. [51,52]. This is encapsulated in the terms proportional
to the transversal correlation function 〈S+

j S−
i 〉. Without this

term, one would obtain A ,D,K zz ∝ m2 in the micromagnetic
description, corresponding to the random phase approximation
[56] in the language of Green’s functions. Neglecting the
fluctuations may also be interpreted as a mean-field approxi-
mation [38].

In the case of the single-ion anisotropy, it is long known
that the correlation corrections play an important role; at low
temperature, they modify the magnetization dependence of
the micromagnetic anisotropy coefficient from K zz ∝ m2 to
K zz ∝ m3 [37], a significantly faster decrease than in the
random phase approximation.

For the Heisenberg exchange interaction, the correlation
correction has an opposite sign [cf. Eqs. (3) and (5)], which
leads to a slower decrease of the parameter A with temperature
compared to the prediction of the random phase approxima-
tion. If the magnetization dependence of the exchange stiffness
is expressed in the form of a power law A ∝ mκA at low
temperature, this yields κA < 2. As discussed in Ref. [38],
the exact value of the exponent depends on the system
parameters, in particular the number of neighbors considered
and the strength of the anisotropy. Note that Eqs. (3)–(5)
describe the temperature dependence of the effective inter-
action coefficients for arbitrary pairs of atoms [59]; since
the correlation function 〈S+

j S−
i 〉 decays for further neighbors,
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the random phase approximation gives a better prediction in
this case. Furthermore, the correlations decrease faster if the
correlation length ξ is smaller, which is directly connected to
the spin wave frequency at zero wave vector by ξ−2 ∝ ω0 =
γ

μs
(2Kzz + μsB

z). The correlation length is expected to play an
especially important role in two-dimensional systems, where
the fluctuations destroy long-range order at finite temperature
in the absence of the spin wave gap [60].

For the Dzyaloshinsky-Moriya interaction, Eqs. (3) and (4)
demonstrate that the correlation correction has the same sign as
in the case of the Heisenberg exchange interaction. Regarding
the magnitude of the corrections in Eqs. (3) and (4), note that
the correlation function Im〈S+

j S−
i 〉 = 〈(Sj × Si)

z〉 appears
as a coefficient of the Dzyaloshinsky-Moriya interaction in
the Hamiltonian Eq. (1), while Re〈S+

j S−
i 〉 = 〈Sx

j Sx
i + S

y

j S
y

i 〉
is connected to the Heisenberg interaction. Therefore, it is
expected that the ratio of the real and imaginary parts of
the correlation function follow the ratio of the interaction
coefficients to which they are attributed,

Dij

Jij

≈ Im〈S+
j S−

i 〉
Re〈S+

j S−
i 〉 . (15)

Substituting Eq. (15) into Eqs. (3) and (4) yields a
very similar temperature dependence for A and D . This is
in agreement with the observation that the wavelength of
spin spirals (λ ∝ A /D) is practically independent of the
temperature [44].

Finally, the Dzyaloshinsky-Moriya interaction also influ-
ences the temperature dependence of the anisotropy term K zz

as shown in Eq. (5). This is surprising because it is known
that the Dzyaloshinsky-Moriya interaction does not influence
the spin wave spectrum of ferromagnetic systems at k = 0
at zero temperature; it only induces an asymmetry between
k and −k [14]. Since the system gains energy from the
Dzyaloshinsky-Moriya interaction in Eq. (1) if Dij Im〈S+

j S−
i 〉

is positive, the anisotropy term induced by the Dzyaloshinsky-
Moriya interaction always has a positive sign and increases
at low temperature with the fluctuations. This is contrary
to the temperature dependence of the single-ion anisotropy,
which always decreases (K zz ∝ m3 at low temperature).
While all the spins are parallel in the ferromagnetic ground
state, at finite temperature the spins are fluctuating, and
the Dzyaloshinsky-Moriya interaction opens a finite average
angle Im〈S+

j S−
i 〉 ∝ sin ϑ between them, which induces an

anisotropy term in the spin wave spectrum. An analogy can
be drawn between the correlated random fluctuations of the
spins and the similar anisotropy effect observed in spin glasses
[25], where the finite average angle between the spins appears
because of the random relative positions of the magnetic atoms
and nonmagnetic impurities [26].

III. COMPARISON TO MONTE CARLO SIMULATIONS

In order to illustrate the theory outlined above for obtaining
the effective temperature-dependent interaction coefficients
Eqs. (3)–(5), as a model system we considered a square
lattice, representing a magnetic monolayer on a cubic (001)
surface. We chose an ultrathin magnetic film in order to
examine the pronounced role of the spin fluctuations, and

FIG. 1. Sketch of the square lattice and the interaction parameters
used for the calculations and the Monte Carlo simulations. The
considered spin waves are propagating along the x direction.

because such systems play an important role in suggested
applications based on the Dzyaloshinsky-Moriya interaction
[12,23]. As displayed in Fig. 1, we used only nearest-neighbor
Heisenberg J and Dzyaloshinsky-Moriya D interactions, with
the Dzyaloshinsky-Moriya vectors pointing perpendicular to
the lattice vectors due to the C4v symmetry of the system.
The second-order single-ion anisotropy in Eq. (1) can only
describe an out-of-plane easy axis or an easy plane in the
considered system by symmetry, and this term was neglected
to simplify the calculations. We applied an in-plane magnetic
field B along the z direction to force the system in an
in-plane ferromagnetic state and calculated the spin wave
frequencies with propagation vectors along the perpendicular
x direction. This is a standard procedure for the experimental
determination of the Dzyaloshinsky-Moriya interaction in
ultrathin films; for example, see Refs. [17–19].

In the present case, the spin wave spectrum Eq. (2) along
the x direction may be expressed as

μs

γ
ωk(T ) = 2J [1 − cos(kxa)] + 2D sin(kxa)

+ 2Kzz + μsB
z, (16)

with the connection to the atomistic parameters J and D

as defined in Eqs. (3)–(5). Importantly, the anisotropy term
Kzz is only induced by the presence of thermal fluctuations
and the Dzyaloshinsky-Moriya interactions. In the considered
system with only nearest-neighbor interactions, the ratio D/J
is independent of the temperature, emphasizing the strong
analogy between the Heisenberg and Dzyaloshinsky-Moriya
exchange interactions. For a proof, see Appendix C.

For checking the accuracy of the theoretical model, we
performed Monte Carlo simulations on an N = 64 × 64
lattice. For the details of the simulations, see Appendix D.
The simulations converge to the thermal equilibrium of the
system described by the Hamiltonian Eq. (1) and include all
higher-order correlation functions neglected in the model. The
spin wave frequencies may be expressed by rewriting Eq. (8)
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FIG. 2. Calculated spin wave spectrum from the Monte Carlo
simulations (MC) and from Green’s function theory in Callen’s
formulation (CGF). The dimensionless interaction parameters are
J = 1, D = −0.2, Bz = 0.1, μs = 1.

in the form

ωk(T ) = γ

μs

kBT
2m

N〈S−
k S+

−k〉
, (17)

where the right-hand side contains only expectation values
in thermal equilibrium, which can be calculated from Monte
Carlo simulations. The softening of the spin wave frequencies
with temperature and the comparison to the theoretical model
is illustrated in Fig. 2.

After obtaining the spin wave frequencies, an expression
of the form of Eq. (16) was fitted to the dispersion relation to
obtain the effective finite-temperature coupling coefficients.
The results of the Monte Carlo simulations are compared to
the theoretical predictions in Fig. 3. The fluctuation corrections
can modify the interactions significantly, by almost 10% of
their zero-temperature value at maximum. The deviation from
the result of the random phase approximation or mean-field
model due to spin correlations is most pronounced at low tem-
perature. Including the correlation corrections using Green’s
function theory in Callen’s formulation, as discussed above,
gives reasonable quantitative agreement with the simulation
results over the whole range in magnetization, while higher-
order corrections are less significant. The simulations also
confirm that the temperature dependence of the Heisenberg
and Dzyaloshinsky-Moriya interactions is very similar; the
two functions completely coincide in the theoretical model as
discussed above.

For a quantitative comparison between theory and simula-
tions, we transformed the temperature-dependent coefficients
to the corresponding quantities in the micromagnetic model—
see Eqs. (12) and (13)—and fitted power functions of the form
A ,D ∝ mκA ,D to the data in the range 0.9 � m � 1.0. In
the case of the simulation results, we obtain κA = κD = 1.54
(the values agree within the given precision), Green’s function
theory in Callen’s formulation yields κCGF = 1.57, while the
random phase approximation leads to the well-known mean-
field result κRPA = 2. Exponents between 1.66 and 1.76 were
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FIG. 3. Fluctuation corrections to the effective temperature-
dependent coefficients as a function of magnetization: comparison
between the results of Monte Carlo simulations (MC) and Green’s
function theory in Callen’s formulation (CGF). These corrections
are not included in the random phase approximation (RPA). The
theoretical models give the same prediction for the Heisenberg and
Dzyaloshinsky-Moriya terms. The error bars indicate the uncertainty
of the fitting parameters. The dimensionless interaction parameters
are J = 1, D = −0.2, Bz = 0.1, μs = 1.

calculated for the temperature-dependence of the Heisenberg
exchange stiffness of three-dimensional magnets in Ref. [38],
indicating that the fluctuation corrections play an even more
pronounced role in the presently considered two-dimensional
ultrathin film. Note that as the magnetization decreases with
increasing temperature, the correlation corrections also tend
to zero, and the mean-field exponent κ = 2 is recovered from
both simulations and theory.
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FIG. 4. Energy of the spin wave at wave vector k = 0 as a function
of magnetization: comparison between results of Monte Carlo
simulations (MC), Green’s function theory in Callen’s formulation
(CGF) and in the random phase approximation (RPA). The error
bars indicate 95% confidence intervals for the simulation data. The
dimensionless interaction parameters are J = 1, D = −0.2, Bz =
0.1, μs = 1.
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Another important prediction of the theoretical model is
the anisotropy term induced by the Dzyaloshinsky-Moriya
interaction at finite temperature. This can be visualized
by calculating the frequency of the spin wave with zero
wave vector, μs

γ
ω0 = 2Kzz + μsB, as shown in Fig. 4. In

the considered system, for the induced anisotropy Green’s
function theory predicts

Kzz = D2

J

(J
J

− m

)
. (18)

The energy gain from spin canting D2/J is generally
several percent of the Heisenberg exchange J in ultrathin films,
and the fluctuation corrections can almost reach a maximum
of 10%, as shown in Fig. 3. Since the typical strength of the
Heisenberg exchange is on the order of 10 meV, the maximum
of the induced anisotropy may be on the order of 0.1 meV,
which is comparable in magnitude to the demagnetization
anisotropy induced by dipolar interactions in ferromagnetic
monolayers; for typical parameter values obtained from ab
initio calculations, see, e.g., Ref. [61].

IV. SUMMARY

In summary, we established a connection between the
temperature-independent atomistic interaction parameters
Jij ,Dij ,K

zz in Eq. (1) and the effective temperature-dependent
micromagnetic interaction parameters A ,D,K zz in Eq. (9)
by calculating the spin wave spectrum. In the atomistic
calculations, we relied on the classical version of the Green’s
function formalism as formulated in Ref. [50]. By comparing
the theoretical calculations to Monte Carlo simulations, we
demonstrated on a simple model system that the method
describes the finite-temperature corrections due to spin fluctua-
tions with a high precision, while the well-known mean-field or
random phase approximation gives significantly less accurate
results. The correlation corrections for the Heisenberg and
Dzyaloshinsky-Moriya exchange interactions are very similar
and are determined by the spatial decay of the transversal
spin correlation function, while the single-ion anisotropy term
must be treated differently. We also showed that the presence
of the Dzyaloshinsky-Moriya interaction can give rise to an
additional anisotropy accompanied by an increasing spin wave
frequency at zero wave vector with increasing temperature,
although it does not modify it at zero temperature. This effect
can be attributed to the Dzyaloshinsky-Moriya interactions
in connection with the finite angle between the fluctuating
transversal components of the spins.

Overall, it can be concluded that the method presented here
may be used for the determination of temperature-dependent
micromagnetic interaction parameters in multiscale models,
possibly circumventing time-consuming atomistic spin dy-
namics simulations. Due to the simple form of Eqs. (3)–(5),
the close analogy with quantum spin models, the fact that
the expressions do not explicitly rely on the symmetry or
dimension of the system, and the possible generalization to
other types of magnetic order, it is expected that the results
presented in this paper may motivate further studies for
the determination of temperature-dependent micromagnetic
parameters in magnetic materials.
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APPENDIX A: GREEN’S FUNCTION THEORY

Here it will be discussed how the excitation frequencies of
the classical spin system Eq. (1) may be calculated at finite
temperature. Following the derivation for the quantum case
[50], first one has to define the Poisson brackets of the spin
components [51],{

Sα
i ,S

β

j

} = − γ

μs

εαβγ δij S
γ

i , (A1)

which generate the equation of motion through the well-known
formula

∂tS
α
i = {

Sα
i ,H

} = γ

μs

εαβγ Sα
i

∂H

∂S
β

i

. (A2)

If the ground state is ferromagnetic along the z direction,
as supposed in the main part of the paper, it is advised to
introduce the variables S±

i = Sx
i ± S

y

i satisfying

{
Sz

i ,S
±
j

} = ±i
γ

μs

δijS
±
i , (A3)

{
S+

i ,S−
j

} = 2i
γ

μs

δijS
z
i . (A4)

Using the transformed variables, the Hamiltonian Eq. (1)
may be rewritten as

H = −1

2

∑
i,j

{
JijS

z
i S

z
j + Re

[(
Jij + iDz

ij

)
S+

i S−
j

]}

−
∑

i

Kzz
(
Sz

i

)2 − μs

∑
i

BzSz
i

− 1

2

∑
i,j

{
Sz

i Re
[(

D
y

ij + iDx
ij

)
S+

j

]
−Re

[(
D

y

ij + iDx
ij

)
S+

i

]
Sz

j

}
. (A5)

In spin wave theory, the equations of motion must be
linearized in the variables S±

i � 1. It can be shown that
the terms proportional to Dx

ij and D
y

ij only yield higher-
order corrections, and they will be neglected in further
calculations. Consequently, we will also drop the z index of
the Dzyaloshinsky-Moriya vector component parallel to the
magnetization. The equations for S+

i and S−
i decouple and

may be diagonalized in Fourier space,

S−
k = 1√

N

∑
i

e−ikRi S−
i , (A6)

yielding

∂tS
−
k = −iωT =0

k S−
k , (A7)
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with the spin wave frequencies

ωT =0
k = γ

μs

(J0 − Jk − iDk + 2Kzz + μsB
z). (A8)

The Fourier transforms of the interaction coefficients are
defined as

Jk =
∑

Ri−Rj

e−ik(Ri−Rj )Jij , (A9)

iDk =
∑

Ri−Rj

e−ik(Ri−Rj )iDz
ij . (A10)

Note that Eq. (A10) is real valued, because Dij is antisym-
metric in the lattice indices.

At finite temperature, following Refs. [50,51] we will
consider the time-dependent Green’s function

Gij (t ; r) = θ (t)
〈{

S−
i (t),erSz

j (0)S+
j (0)

}〉
, (A11)

where θ (t) is the Heaviside function, 〈 〉 denotes averaging
in thermal equilibrium, and r is a real parameter. Instead of
the homogeneous Eq. (A2), this satisfies the inhomogeneous
equation of motion

∂tGij = δ(t)
〈{

S−
i ,erSz

j S+
j

}〉
+ θ (t)

〈{{S−
i (t),H },erSz

j (0)S+
j (0)

}〉
. (A12)

The Poisson bracket

{S−
i (t),H } = i

γ

μs

{∑
l

[−JilS
−
i Sz

l + (Jil + iDil)S
z
i S

−
j

]

− 2KzzSz
i S

−
i − μsB

zS−
i

}
(A13)

introduces higher-order Green’s functions on the right-hand
side of Eq. (A12). These are handled within the decoupling
approximation,

θ (t)
〈{

S−
i (t)Sz

l (t),erSz
j (0)S+

j (0)
}〉 ≈ mGij − α〈S−

i S+
l 〉Glj .

(A14)

It was demonstrated in Ref. [51] that in the classical limit
Eq. (A14) may be used for both exchange interactions and
single-ion anisotropy terms. In the literature there exist several
schemes for the decoupling coefficient α; we used the value
α = m

2 from Refs. [50,51] in the main text, since we found
that generally this gives the best agreement with the spin wave
spectrum calculated from the simulations.

After performing Fourier transformation in time (∂t →
−iω) and space,

Gk = 1

N

∑
Ri−Rj

e−ik(Ri−Rj )Gij , (A15)

〈S−
k S+

−k〉 = 1

N

∑
Ri−Rj

e−ik(Ri−Rj )〈S−
i S+

j 〉, (A16)

Eq. (A12) may be rewritten as

(ω − ωk)Gk = 1

2π

γ

μs

1

N
�(r), (A17)

with

�(r) = iμs

γ

〈{
S−

i ,erSz
j S+

j

}〉
. (A18)

Note that �(0) = 2m from the Poisson bracket Eq. (A4).
The spin wave frequencies read

ωk = γ

μs

[
(J0 − Jk − iDk + 2Kzz)m + μsB

z

−α
∑

k′
(Jk−k′ − Jk′ − iDk′ + 2Kzz)〈S−

k′ S
+
−k′ 〉

]
.

(A19)

By performing inverse Fourier transformation in space, one
arrives at the expression

ωij = γ

μs

{
−(Jij + iDij )m − αJij 〈S+

j S−
i 〉

+ δij

[(∑
l

Jil + 2Kzz

)
m + α

∑
l

(Jil + iDil)

×〈S+
l S−

i 〉 − α2Kzz
〈
S+

i S−
i

〉]}
. (A20)

Collecting the real and imaginary parts in the off-diagonal
(i 
= j ) part of Eq. (A20) yields Eqs. (3) and (4) for the effec-
tive temperature-dependent Heisenberg and Dzyaloshinsky-
Moriya interactions, while the extra terms in the diagonal part
may be collected into the anisotropy term Eq. (5).

In order to solve Eqs. (A17)–(A19), one has to introduce
the spectral density

Sij (ω) = i

2π
lim
δ→0

[Gij (ω + iδ) − Gij (ω − iδ)] (A21)

and use the spectral theorem

〈
erSz

j S+
j S−

i

〉 =
∫ ∞

−∞

kBT

ω
Sij (ω)dω, (A22)

the classical limit of the corresponding quantum expression
[62]. Since Eq. (A17) describes pure single-particle excitations
in the current approximation, it simplifies to Eq. (8) for r = 0
in Fourier space.

In real space, the appropriate form of Eq. (A22) is〈
erSz

i S+
i S−

i

〉 = ��(r), (A23)

with � from Eq. (7). Both sides of Eq. (A23) may be expressed
by the momentum generating function

�(r) = 〈
erSz

i

〉
(A24)

by using the Poisson brackets, yielding the differential equa-
tion

�′′ + 2�

1 + r�
�′ − � = 0, (A25)

where ′ denotes differentiation with respect to r .
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The solution of Eq. (A25) satisfying �(0) = 1 and regular-
ity conditions for � reads

�(r) = 1

1 + r�

sinh
(
r + 1

�

)
sinh 1

�

. (A26)

Equation (A26) may also be obtained as the classical limit of
the corresponding quantum expression [50], or by calculating
〈erSz

i 〉 in a mean-field model and using the analogy 1
�

↔ μsBMF

kBT

between the probability densities of mean-field and Green’s
function theories [63]. Finally, we mention that calculating
�′(0) = m yields Eq. (6) for the magnetization.

APPENDIX B: MICROMAGNETIC MODEL

In the general case, the micromagnetic free-energy func-
tional of a three-dimensional system described by the atomistic
Hamiltonian Eq. (1) is given by

F =
∫ ∑

α,β,γ

∂αSγ A αβ∂βSγ +
∑
α,β

DαβLαβ(S)

−K zz(Sz)2 − MBzSzd3r, (B1)

where A αβ and Dαβ are both 3 × 3 tensors [64].
For the Heisenberg exchange interaction, Eq. (B1) ex-

presses that the Jij coefficients may be anisotropic in real
space; i.e., they may differ for neighbors along different
directions. However, all anisotropy in spin space is included
in the K zz term, since the model did not contain two-ion
anisotropy terms. The Heisenberg exchange tensor may be
expressed as

A αβ = 1

4

m

υWS

∑
Ri−Rj

Jij

(
Rα

j − Rα
i

)(
R

β

j − R
β

i

)
, (B2)

indicating that it is symmetric in the Cartesian indices.
For the Dzyaloshinsky-Moriya interaction, the linear Lif-

shitz invariant is usually defined in the form

L(β)
αγ = Sα∂βSγ − Sγ ∂βSα, (B3)

which is antisymmetric in the α and γ indices. Due to
considering three-dimensional spins, these two indices may
simply be replaced by the perpendicular direction

Lαβ = 1

2

∑
γ,δ

εαγ δL
(β)
γ δ , (B4)

the tensorial notation used in Eq. (B2) [64]. The corresponding
Dzyaloshinsky-Moriya tensor reads

Dαβ = − m

2υWS

∑
Ri−Rj

Dα
ij

(
R

β

j − R
β

i

)
. (B5)

Note that the first index of the tensor in Eq. (B5) describes
the rotational plane of the spins, while the second stands for
the direction of the modulation. For spin waves, the rotational
plane is perpendicular to the ferromagnetic direction. If we
denote the ferromagnetic direction by eFM and calculate
the spin wave frequencies along the ek direction, only a
single component of the Dzyaloshinsky-Moriya tensor may

be calculated [cf. Eq. (9)],

D =
∑
α,β

eα
FMDαβe

β

k . (B6)

The symmetry of the system determines which components
of the A αβ and Dαβ tensors may be finite, and which ones will
take the same value. For example, in cubic systems A αβ and
Dαβ are both constant matrices with the above definitions.
For a list of Lifshitz invariants with finite Dαβ components in
different symmetry classes, see, e.g., Refs. [7,65].

The spin wave frequencies are calculated analogously to the
atomistic model, by constructing the equation of motion [66]

∂t S = γ

M
S × δF

δS
, (B7)

then linearizing it in small deviations from the ferromagnetic
state. Note that even if the micromagnetic model is used for the
description of the system at room temperature, it is common
practice to use Eq. (B7) for the calculation of the spectrum (see,
e.g., Ref. [18]), where the effect of temperature is only included
in the interaction coefficients. A more accurate inclusion of
finite-temperature effects in micromagnetic models is given
by the Landau-Lifshitz-Bloch equation [31].

APPENDIX C: SQUARE LATTICE

For the model calculations we considered a ferromagnetic
monolayer on the (001) surface of a cubic lattice with
C4v symmetry. In this symmetry class, the micromagnetic
exchange interaction corresponds to a constant tensor (A zz =
A xx), while the Dzyaloshinsky-Moriya interaction tensor may
be characterized by the single value Dxz = −D zx .

The complete two-dimensional spin wave spectrum of the
system with the magnetic field applied along the z direction is
given by

μs

γ
ωk(T ) = 2J z[1 − cos(kza)] + 2J x[1 − cos(kxa)]

+ 2D sin(kxa) + 2Kzz + μsB
z, (C1)

with

J z,x = mJ + m2J ReI z,x, (C2)

D = mD + m2J ImI x, (C3)

Kzz = D ImI x. (C4)

Note that J in Eq. (16) is denoted by J x here for clarity.
The expressions I z,x appearing in Eqs. (C2)–(C4) account

for the correlation corrections and may be expressed for an
infinite lattice by the formulas

I z,x = 1

2m

〈
S+

i+δz,x
S−

i

〉

=
(

a

2π

)2 ∫
BZ

e−ikz,xa γ

μs

kBT

ωk(T )
d2k, (C5)

where i + δz,x denotes the nearest neighbors of site i along the
positive z and x directions, respectively.
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At zero temperature, from Eqs. (C2)–(C4) one obtains
J z = J x = J , D = D, and Kzz = 0, which satisfy the C4v

symmetry of the system. However, it should be noted that
at finite temperature one has J z 
= J x and Kzz 
= 0. This is
caused by the simultaneous presence of the magnetic field
along the z direction, which breaks the C4v symmetry and the
Dzyaloshinsky-Moriya interaction.

Regarding Eq. (C5), even at finite temperature B and D

do not break the ωkz,kx = ω−kz,kx symmetry of the spectrum,
which implies that I z will remain real at all temperatures. In
the main text, we have used the fact that the temperature de-
pendence of the Heisenberg J = J x and the Dzyaloshinsky-
Moriya D exchange interactions is exactly the same within

Green’s function formalism in the present system. This can be
proven by introducing the simplified notations

k′ = kxa, (C6)

k′′ = kza, (C7)

A = 2J x + 2J z[1 − cos(k′′)] + 2Kzz + μsB
z, (C8)

B = 2J x, (C9)

C = 2D, (C10)

and calculating I x in Eq. (C5) as

I x = kBT

(2π )2

∫ 2π

0
I x

1Ddk′′, (C11)

ReI x
1D =

∫ 2π

0

A cos k′−B cos2 k′

A2 − C2 − 2AB cos k′ + (B2 + C2) cos2 k′ dk′, (C12)

ImI x
1D =

∫ 2π

0

C−C cos2 k′

A2 − C2 − 2AB cos k′ + (B2 + C2) cos2 k′ dk′. (C13)

By introducing

λ± = AB ±
√

A2B2 − (A2 − C2)(B2 + C2)

B2 + C2
, (C14)

Eqs. (C12) and (C13) may be expressed analytically as

ReI x
1D = − 2π

B2 + C2

⎡
⎣B + λ+(A − Bλ+)

(λ+ − λ−)
√

λ2+ − 1
− λ−(A − Bλ−)

(λ+ − λ−)
√

λ2− − 1

⎤
⎦, (C15)

ImI x
1D = − 2π

B2 + C2

⎡
⎣C + C(1 − λ2

+)

(λ+ − λ−)
√

λ2+ − 1
− C(1 − λ2

−)

(λ+ − λ−)
√

λ2− − 1

⎤
⎦. (C16)

It can be shown by algebraic transformations that

ImI x
1D

ReI x
1D

= ImI x

ReI x
= D

J x
. (C17)

Finally, substituting Eq. (C17) into Eqs. (C2) and (C3) and
calculating the ratio of the latter two yields

D
J x

= D

J
, (C18)

meaning that the ratio of the Dzyaloshinsky-Moriya and
Heisenberg exchange interactions indeed does not depend on
the temperature. Finally, substituting Eq. (C17) into Eq. (C4)
yields Eq. (18) for the correspondence between the induced
anisotropy and the Heisenberg exchange interaction. We note
that the exact equality remains true for finite anisotropy in
the plane Kzz 
= 0—for example, on a rectangular lattice
where this is not prohibited by symmetry—but it only holds
if the model is restricted to nearest-neighbor interactions.

APPENDIX D: MONTE CARLO SIMULATIONS

We performed the Monte Carlo simulations on an N =
64 × 64 square lattice with periodic boundary conditions for

the Hamiltonian illustrated in Fig. 1. We used the single-spin
Metropolis algorithm to update the spin directions, with
sweeping over the whole lattice at every Monte Carlo step.
From the simulations we extracted the thermal equilibrium
quantities m = 1

N

∑
i 〈Sz

i 〉 and 〈S−
k S+

−k〉 from the lattice
Fourier transform of the spin configurations. For the data
displayed in Fig. 3, we initialized the system in the ferro-
magnetic state, increased the temperature from kBT = 0.05 to
kBT = 1.50 in steps of kB�T = 0.05, performed thermaliza-
tion for 2 × 105 Monte Carlo steps, averaged the observables
during the Monte Carlo evolution over 105 configurations
at 103 Monte Carlo step distance from each other, and
finally averaged over 100 independent realizations of the
process.

After determining the observables, we calculated the spin
wave frequencies from Eq. (17), extracted the spectrum
along the x direction, and fitted the results with a function
of the form Eq. (16) to extract the temperature-dependent
parameters. We compared the results to the prediction of
Green’s function theory, also calculated for an N = 64 × 64
lattice. Increasing the lattice size to N = 128 × 128 in the
theoretical calculations modified the interaction parameters on
the order of 10−10, well below the precision of the simulations
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and indicating that finite-size effects are negligible for the
considered problem.

We also calculated the spin wave spectrum along the
z direction from the simulations in order to confirm that
it remains symmetric and to extract the J z parameter

discussed in Appendix C. However, we were not success-
ful in determining a deviation between J z and J x that
would be significant compared to the uncertainty of the
parameters obtained from the simulations by the fitting
procedure.
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